Choose any four out of five problems.

Please specify which four listed below to be graded:
1)_____; 2)_____; 3)_____; 4)_____;

Name: ______________________________

Student ID: ________________________________

E-Mail Address: ________________________________
Problem 1:
Consider the system
\[x(k+1) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 2 \\ 3 \end{bmatrix} u(k) , \]
\[y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k) \]
and let \(x(0) = 0 \) and \(u(k) = 1, n \geq 0 \).

a) Determine \(\{y(k)\}, k \geq 0 \) by any approach.

b) If it is known that when \(u(k) = 0 \), then \(y(0) = y(1) = 1 \), can \(x(0) \) be uniquely determined? If your answer is affirmative, determine \(x(0) \).
Problem 2:

Let

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 \\
\end{bmatrix},
\]

Find e^{At} and $\sin At$.
Problem 3:
Show that there exists a similarity transformation matrix P such that

$$P A P^{-1} = A_c = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\alpha_0 & -\alpha_1 & -\alpha_2 & \cdots & -\alpha_{n-1}
\end{bmatrix},$$

if and only if there exists a vector $b \in \mathbb{R}^n$ such that the rank of $[b \ Ab \ \cdots \ A^{n-1}b]$ is n.

Problem 4:
Consider the matrix

\[
A = \begin{bmatrix}
-\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix},
\]

show that its characteristic polynomial is given by

\[
\Delta(\lambda) = \lambda^4 + \alpha_1\lambda^3 + \alpha_2\lambda^2 + \alpha_3\lambda + \alpha_4.
\]

Show also that if \(\lambda_i \) is an eigenvalue of \(A \), then \([\lambda_i^3 \lambda_i^2 \lambda_i 1]^T \) is an eigenvector of \(A \) associated with \(\lambda_i \).
Problem 5:
Consider the system representations given by

\[
x(k + 1) = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(k)
\]

\[
y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 1 & 0 \end{bmatrix} u(k)
\]

and

\[
\tilde{x}(k + 1) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \tilde{x}(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)
\]

\[
y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \tilde{x}(k) + \begin{bmatrix} 0 & 1 \end{bmatrix} u(k)
\]

Are these representations equivalent? Are they zero-input equivalent?