ECEN 4503
Random Signals and Noise
Spring 2002
Final Exam

Choose any four out of five problems,
Please specify
1)_____; 2)_____; 3)_____; 4)_____

Name: ______________________________

Student ID: ______________________________

E-Mail Address: ______________________________
Problem 1:
In a computer simulation it is desired to transform numbers, that are values of a random variable X uniformly distributed on $(0,1)$, to numbers that are values of a Cauchy random variable Y as defined by

$$F_Y(y) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1}\left(\frac{y}{b}\right).$$

Find the required transformation T.
Problem 2:
The random variables X and Y are statistically independent with exponential densities

\[f_X(x) = \alpha e^{-\alpha x} u(x), \text{ and} \]
\[f_Y(y) = \beta e^{-\beta y} u(y). \]

Find the probability density function of the random variable $Z = \min(X, Y)$.
Problem 3:
The random variables X and Y are statistically independent with Rayleigh densities

\[f_X(x) = \frac{x}{\alpha^2} e^{-x^2/2\alpha^2} u(x), \text{ and} \]
\[f_Y(y) = \frac{y}{\beta^2} e^{-y^2/2\beta^2} u(y). \]

Show that if $Z = X / Y$, then

\[f_Z(z) = \frac{2\alpha^2}{\beta^2} \frac{z}{(z^2 + \alpha^2 / \beta^2)^2} u(z). \]
Problem 4:
A random process is defined by
\[Y(t) = X(t) \cos(\omega_0 t + \Theta), \]
where \(X(t) \) is a wide-sense stationary random process that amplitude-modulates a carrier of constant angular frequency \(\omega_0 \) with a random phase \(\Theta \) independent of \(X(t) \) and uniformly distributed on \((−\pi, \pi)\). Find \(E[Y(t)] \) and autocorrelation function of \(Y(t) \). Is \(Y(t) \) wide-sense stationary?
Problem 5:
A random process is given by
\[X(t) = A \cos(\Omega t + \Theta) \]
where \(A \) is a real constant, \(\Omega \) is a random variable with density function \(f_{\Omega}(\cdot) \), and \(\Theta \) is a random variable uniformly distributed on the interval \((0, 2\pi)\) independently of \(\Omega \). Show that the power spectrum of \(X(t) \) is
\[S_{xx}(\omega) = \frac{\pi A^2}{2} [f_{\Omega}(\omega) + f_{\Omega}(-\omega)]. \]