Problem 1:

Let

\[
S = \left\{ x \in \mathbb{R}^3 \mid x = \begin{bmatrix} 0.6 \\ 0.5 \\ 0.0 \end{bmatrix} + \begin{bmatrix} 1.2 \\ 1.0 \\ 0.0 \end{bmatrix}, \alpha, \beta \in \mathbb{R} \right\},
\]

find the orthogonal complement space of \(S \), \(S^\perp \subseteq \mathbb{R}^3 \), and determine an orthonormal basis and dimension for \(S^\perp \). For \(x = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T \in \mathbb{R}^3 \). And find its direct sum representation (i.e., \(x_1 \) and \(x_2 \)) of \(x = x_1 \oplus x_2 \), such that \(x_1 \in S \), \(x_2 \in S^\perp \).
Problem 2:
Let $V = F^3$, and let F be the field of rational polynomials. Determine the representation of $v = \begin{bmatrix} s + 2 \\ \frac{1}{s} \\ -2 \end{bmatrix}$ in (V, F) with respect to the basis $\{v^1, v^2, v^3\}$, where

$v^1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, v^2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v^3 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$.
Problem 3:

Show that the determinant of the $m \times m$ matrix

$$
\begin{bmatrix}
 s^k & -1 & 0 & \cdots & 0 & 0 \\
 0 & s^{k-1} & -1 & \cdots & 0 & 0 \\
 0 & 0 & s^{k-2} & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & s^{k_2} & -1 \\
 \beta_m(s) & \beta_{m-1}(s) & \beta_{m-2}(s) & \cdots & \beta_2(s) & \beta_1(s)
\end{bmatrix}
$$

is equal to

$$s^n + \beta_1(s)s^{n-k_1} + \beta_2(s)s^{n-k_1-k_2} + \cdots + \beta_m(s)$$

where $n = k_1 + k_2 + \cdots + k_m$ and $\beta_i(s)$ are arbitrary polynomials. (hint: proof by induction)
Problem 4:
Given is the system of first-order ordinary differential equation
\[\dot{x} = t^2 Ax, \]
where \(A \in \mathbb{R}^{n \times n} \) and \(t \in \mathbb{R} \). Determine the state transition matrix \(\Phi(t, t_0) \).
Problem 5:

Consider $x(k+1) = A(k)x(k)$. Define

$$\Phi(k,m) = A(k-1)A(k-2)\cdots A(m), \quad \text{for } k > m$$

$$\Phi(m,m) = I$$

Show that, given the initial state $x(m) = x_0$, the state at iteration k is given by $x(k) = \Phi(k,m)x_0$.

If A is independent of k, what is $\Phi(k,m)$?