ETM5221 Engineering Teaming: Application and Execution

Nicholas C. Romano, Jr.
Nicholas-Romano@mstm.okstate.edu

Paul E. Rossler
prossle@okstate.edu

Week 1 April 2, 2002
Challenges of Teaming
Agenda

Class Overview
Introductions
Review the Questionnaire
Meeting Analysis
Teaming Challenges

Class overview

1. Instructor Introductions
2. Class Introductions
3. Teaching and Learning Objectives
4. Course Syllabus and Policies
Professors

Nicholas C. Romano, Jr. Ph.D.

Paul E. Rossler Ph.D., P.E.

Class introductions

- Your Name
- Where you work
- What is your job
- Why interested in taking this class
- Kids? Pets? Describe them
- Favorite Food
- Favorite Color
Teaching philosophy

If we only tell you, you might forget

If we also show you, you might remember

If you get yourself involved, you will understand

Three steps to active student learning

1. Teach: We will explain and demonstrate concepts
2. Practice: Students must take advantage of opportunities to practice using these concepts
3. Evaluate: Assignments, participation & Exams allow Instructor evaluation

   Students must also learn to evaluate themselves and prepare accordingly
We are educators, professors, NOT trainers. We will…

1. Encourage
2. Provide opportunities
3. Offer useful real world perspectives
4. Prepare students for future
5. Take a small step preparing students to better lead and manage teams

Course syllabus detail review
Pre-class questionnaire results

Meeting analysis: Findings from research and practice

• Why consider meetings in teaming?
• Defining meetings
• Meeting productivity metrics
Why consider meetings in teaming?

Research and practice illustrate that meetings:

- Are essential for accomplishing work
- Dominate workers’ and managers’ time
- Are considered costly, unproductive, dissatisfying
- Are steadily increasing in number and length

"Almost every time there is a genuinely important decision to be made in an organization, a group is assigned to make it -- or at least to counsel and advise the individual who must make it."

-Hackman
Why people meet (cont’d.)

"We meet because people holding different jobs have to cooperate to get a specific task done. We meet because the knowledge and experience needed in a specific situation are not available in one head, but have to be pieced together out of the knowledge and experience of several people."

- Peter Drucker (1967)
Today we collaborate through meetings

We need to understand today’s meetings as thoroughly as possible in order to move to toward collaborating in a virtual world

One way to do this is through Meeting Productivity Metrics

A big change is occurring. Why is this happening?

• Downsizing/Rightsizing
• Flattening
• Telecommuting
• Increased Competition
• Globalization
• Etc....
A shift is taking place with respect to the critical resource

<table>
<thead>
<tr>
<th>Revolutionary Age</th>
<th>Critical Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>Physical capital (manpower, horsepower)</td>
</tr>
<tr>
<td>Industrial</td>
<td>Financial capital (purchasing power)</td>
</tr>
<tr>
<td>Information</td>
<td>What do you think it is?</td>
</tr>
</tbody>
</table>

The Information Age

- Manage routine transactions (50s-60s)
- Integrated business operations (70s)
- Enterprise-wide communication (80s)
- Collaborative technology (90s)
- Ubiquitous computing 2000-???
- Manage and leverage intellectual capital
Intellectual capital

- Companies typically value tangible assets, such as buildings, machinery, cash but such measures do not include the value of the work force, their knowledge, and the way they use information technology to increase productivity.
- In the information society intangible assets may represent significant competitive advantage.

Intellectual capital: Categories of intangible assets

- Human Centered Assets
- Intellectual Property Assets
- Infrastructure Assets
- Market Assets
Meeting intellectual capital

The Gottlieb Duttweiler Foundation has estimated that organizations use only 20% of available intellectual capacity on a day to day basis.

This is most likely a high estimate.

Existing meeting productivity metrics

- Types
- Purposes
- Time
- Number
- Cost
- Efficiency
- Problems
Types of meetings in Corporate America

45% Staff
22% Task
21% Information Sharing
  5% Brainstorming
  2% Ceremonial
  5% Other

Based on 903 meetings (Monge, P. R., McSween, C., & Wyer, J. 1989)

Meeting purposes: 66% involve complex group processes

- 29% Reconcile conflict
- 26% Reach group decision or judgement
- 11% Solve a Problem
- 11% Ensure that everyone understands
- 5% Facilitate staff communication
- 4% Gain support for a program
- 4% Explore new ideas and concepts
- 2% Accept Reports
- 2% Demonstrate a project or system

(Monge, P. R., McSween, C., & Wyer, J. 1989)
Time spent in meetings shows an upward trend

1960’s: Average Exec. 3 1/2 hrs/wk (~3-4 Meetings) Additional time in informal meetings (Tillman, 1960)

1970’s: Average Exec. 6-7/wk (~2x 1960’s Study - Rice, 1973) Managers up to 60% of their time. (Mintzberg, 1973)
Program managers up to 80% of their time.
Middle managers 3 or 4 full days a week.
Some 8 straight hours in one meeting. (Van de Ven, 1973)

1980’s: Typical middle managers ~35% of their work week. Top managers 50% of their time. (Doyle, 1982)
Typical managers up to 80 % of their time. (Monge, 1989)
Average technical professional/manager 1/4 work week.
Top and middle managers 2 days/week.
Executive managers 4 days/week. (Mosvick, 1987)
Time spent in meetings shows an upward trend (cont’d.)

Mosvick (1982, 1986) in 2 studies over a 5 year period of 950 junior-senior managers and technical professionals in large-scale technology-intensive industries U.S. and abroad

Major finding:
"a notable shift toward an increase in the number and length of meetings with an increasingly high level of dissatisfaction with meetings."

Reported length of meetings:
51% between 30 and 90 minutes

(Monge, P. R., McSween, C., & Wyer, J. 1989)
Time spent in meetings shows an upward trend (cont’d.)

Up to 20% of a manager’s work day is spent in conference room meetings. (Panko, 1992)

Managers spend ~ 20% of their work day in 5 person or larger formal meetings and as much as 85% of their time communicating. (Panko, 1994)

Meeting frequency is increasing

Fortune 500 companies hold between 11 to 15 million formal meetings/day and 3 to 4 billion meetings/year (Doyle, 1982; Monge, 1989)

A 1997 survey found that in 1998…
24% of respondents expect to hold more meetings
85% predict the same length or longer meetings
Meeting costs

The 3M Meeting Productivity Study and Harrison Hofstra Study found that…

- 11-15 Million formal meetings / day
- ? Million informal meetings / day
- 3-4 Billion meetings / year
- 30-80% Manager’s time in Teamwork
- 7-15% of personnel budgets on teamwork
- $ billions of spent each year

Meeting efficiency

On average, by managerial function, 33% of meeting time is unproductive (Sheridan, 1989)
### Meeting problems: Agenda (or lack thereof)

No goals or agenda – 2nd most commonly reported problem (Mosvick, 1987)

~ 50% had no written agenda;

However 73% of respondents felt an agenda is "essential" for a productive meeting.

(Burleson, 1990; Sheridan, 1989 - Harrison-Hofstra Survey)
Meeting problems: Agenda (or lack thereof) (cont’d.)

32% No stated agenda
17% Prior Verbal agendas
  9% Written agendas distributed at start
29% Prior written agendas
  (Monge, 1989)

Workers express the desire to work in groups

3 year survey of 10,277 U.S. workers from all levels of employment that 97% reported they needed conditions that encourage collaboration to do their best work. (Hall, 1994)
A recent survey of executives found that…

43% of them admitted dozing off at least once during a meeting

The majority concluded that 20-30% of meetings were unnecessary

(Erickson, 1998)

Findings

Decades of study show that meetings dominate workers’ and managers’ time and yet are considered to be costly, unproductive and dissatisfying.

Yet meetings are essential, because no one person has the knowledge, insight, skills and experience to do the job alone. (Erickson, 1998)
Steps to move toward understanding

• Develop better Collaboration Productivity Metrics
• Develop a Collaboration Productivity Maturity Model
• Develop and Test Guidelines and Interventions to improve Collaboration Productivity via Procedures, Facilitation, and Technology (Erickson, 1998)

Why do some demonstrate teamwork, others don’t?

• Why did the same teamwork approach lead to such widely varying results?
• If the pilot effort was such a success, why are other applications of teamwork failing?
• Why is the probability of effective teamwork over there higher than it is here?
The underlying theory or logic is probably not to blame

- An idea is deemed good, in part, because it makes logical sense
  - Install Teams A B C Improvement
- This logic is easily transferred to – and makes sense in – a lot of different settings
- And, more often than not, a success story exists that provides support for this logic

For example…

- Team Training
- Team Skills
- Teamwork
- Innovation
- Improvement
- Creativity
- Integration of Diverse Skills
- Accelerated New Product Development
- Cost Reduction
Unfortunately, the real world has its own logic (at times)

- Potential sources of slippage are found at each step of a train-of-logic
- These sources vary from setting-to-setting with respect to direction, magnitude, and pliability
- They influence the degree to which the logic train plays itself out or derails
  - In other words, they influence probability of effective implementation

Implementation often takes on a field of dreams approach

- Install the good idea, make it operational, and the desired results will come
- Installation – or solving the Stage 1 Problem - is one thing, what happens next is another
- Where installation (more or less) ends, the Stage 2 Problem begins
  - Effective use to the point of functionality (optimality)
  - Given a good idea’s installation, what must be done to increase the probability of success?
For example, assume training has been done. What next?

Another example

And one more (simplistic) example

Install Teams

- Job Security
- Politics
- Pay and Reward
- Level of Training

Teamwork

Sources of slippage suggest ways to increase probability of change

Implementation Plan – Action Items

- Black suggests that we do X
- Gray suggests that we do Y
- White suggests that we do Z

Good ideas are good only to the degree they achieve good results

- The trains-of-logic that underlying teamwork are hard to argue against
- However, it’s sources of slippage that influence whether that logic train plays out or derails
- The probability of success can be increased by paying attention to these sources of slippage
- The Stage 2 Problem, therefore, should be the centerpiece of implementation planning