CHAPTER 20

The FREQ Procedure

Overview 500
Procedure Syntax 503
 PROC FREQ Statement 503
 BY Statement 506
 EXACT Statement 506
 OUTPUT Statement 509
 TABLES Statement 512
 TEST Statement 522
 WEIGHT Statement 523
Concepts 524
 Inputting Frequency Counts 524
 Grouping with Formats 524
 Computational Resources 525
Statistical Computations 526
 Definitions and Notation 526
 Chi-Square Tests and Measures 528
 Measures of Association 532
 Binomial Proportion 542
 Risks and Risk Differences 544
 Odds Ratio and Relative Risks for 2x2 Tables 545
 Cochran-Armitage Test for Trend 547
 Jonckheere-Terpstra Test 548
 Tests and Measures of Agreement 550
 Cochran-Mantel-Haenszel Statistics 556
 Exact Statistics 563
Results 566
 Missing Values 566
 Procedure Output 567
 Output Data Sets 569
Examples 571
 Example 1: Creating an Output Data Set with Table Cell Frequencies 571
 Example 2: Computing Chi-Square Tests for One-Way Frequency Tables 574
 Example 3: Computing Binomial Proportions for One-Way Frequency Tables 576
 Example 4: Analyzing a 2x2 Contingency Table 579
 Example 5: Creating an Output Data Set Containing Chi-Square Statistics 583
 Example 6: Computing Cochran-Mantel-Haenszel Statistics for a Stratified Table 587
 Example 7: Computing the Cochran-Armitage Trend Test 590
 Example 8: Computing Friedman's Chi-Square Statistic 593
 Example 9: Testing Marginal Homogeneity with Cochran's Q 595
References 600
The FREQ procedure is a descriptive as well as a statistical procedure that produces one-way to n-way frequency and crosstabulation tables. Frequency tables concisely describe your data by reporting the distribution of variable values. Crosstabulation tables, also known as contingency tables, summarize data for two or more classification variables by showing the number of observations for each combination of variable values.

For one-way frequency tables, PROC FREQ can compute statistics to test for equal proportions, specified proportions, or the binomial proportion. For contingency tables, PROC FREQ can compute various statistics to examine the relationships between two classification variables adjusting for any stratification variables. PROC FREQ automatically displays the output in a report and can also save the output in a SAS data set.

For some pairs of variables, you may want to examine the existence or the strength of any association between the variables. To determine the existence of an association, PROC FREQ computes statistics that test the null hypothesis of no association. To determine the strength of an association, PROC FREQ computes measures of association that tend to be close to zero when there is no association and close to their maximums (or minimums) when there is perfect association. The statistics for contingency tables include:

- chi-square tests and measures
- measures of association and tests of these measures
- risks (or binomial proportions) and risk differences for 2x2 tables
- odds ratios and relative risks for 2x2 tables
- tests for trend
- tests and measures of agreement
- Cochran-Mantel-Haenszel statistics.

PROC FREQ computes asymptotic standard errors, confidence bounds, and tests for measures of association and measures of agreement. Exact p-values and confidence bounds are available for various test statistics and measures. PROC FREQ also performs stratified analyses that compute statistics within, as well as across, strata for n-way tables. The statistics include Cochran-Mantel-Haenszel statistics and measures of agreement.

Output 20.1 on page 501 is the simplest form of PROC FREQ output. The one-way frequency tables of hair and eye color show the distributions of these variables. PROC FREQ lists each variable value along with the frequencies and percentages. The statements that produce the output follow:

```sas
proc freq data=color;
run;
```
In addition to listing the frequency distribution separately for each variable, you can create a crosstabulation table to show the joint frequency distribution for the two variables. Output 20.2 on page 502 shows a two-way crosstabulation table and chi-square statistics that test the association between eye and hair color of children from two regions of Europe. The statements that produce this 3×5 table also

- order the variable values according to their appearance in the data set
- exclude the row and column percentages for each cell
- include the expected frequency for each cell
- include each cell’s contribution to the total Pearson chi-square statistic.

In addition to displaying the statistics, the program creates an output data set that contains selected chi-square statistics. For an explanation of the program that produces this output, see Example 5 on page 583.
Output 20.2 Chi-Square Statistics Produced with PROC FREQ

The FREQ Procedure

Table of Eyes by Hair

<table>
<thead>
<tr>
<th>Eyes(Eye Color)</th>
<th>Hair(Hair Color)</th>
<th>Frequency</th>
<th>Expected</th>
<th>Cell Chi-Square</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>fair</td>
<td>69</td>
<td>66.425</td>
<td>0.0998</td>
<td>69.07</td>
</tr>
<tr>
<td></td>
<td>red</td>
<td>28</td>
<td>32.921</td>
<td>3.67</td>
<td>13.70</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>68</td>
<td>63.22</td>
<td>8.92</td>
<td>13.66</td>
</tr>
<tr>
<td></td>
<td>dark</td>
<td>51</td>
<td>53.024</td>
<td>6.69</td>
<td>12.80</td>
</tr>
<tr>
<td></td>
<td>black</td>
<td>6</td>
<td>6.4094</td>
<td>0.79</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>222</td>
<td>222.00</td>
<td>29.13</td>
<td>100.00</td>
</tr>
</tbody>
</table>

green	fair	69	59.543	1.5019	9.06
	red	38	29.51	2.4422	4.99
	medium	55	56.671	4.99	7.22
	dark	37	47.53	2.3329	4.86
	black	0	5.7454	0.5018	0.00
	Total	199	199.00	26.12	100.00

brown	fair	90	102.03	9.06	11.81
	red	47	50.568	4.99	6.17
	medium	94	97.109	7.22	12.34
	dark	94	81.446	4.86	12.34
	black	16	9.8451	0.00	2.10
	Total	341	341.00	44.75	100.00

Total	fair	228	29.92	9.06	11.81
	red	113	14.83	4.99	6.17
	medium	217	28.48	7.22	12.34
	dark	182	23.88	4.86	12.34
	black	22	2.89	0.00	0.79
	Total	762	762.00	762.00	100.00

Statistics for Table of Eyes by Hair

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DF</th>
<th>Value</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>8</td>
<td>20.9248</td>
<td>0.0073</td>
</tr>
<tr>
<td>Likelihood Ratio Chi-Square</td>
<td>8</td>
<td>25.9733</td>
<td>0.0011</td>
</tr>
<tr>
<td>Mantel-Haenszel Chi-Square</td>
<td>1</td>
<td>3.7838</td>
<td>0.0518</td>
</tr>
<tr>
<td>Phi Coefficient</td>
<td></td>
<td>0.1657</td>
<td></td>
</tr>
<tr>
<td>Contingency Coefficient</td>
<td></td>
<td>0.1635</td>
<td></td>
</tr>
<tr>
<td>Cramer's V</td>
<td></td>
<td>0.1172</td>
<td></td>
</tr>
</tbody>
</table>

Sample Size = 762

Several SAS procedures produce frequency counts; only PROC FREQ computes chi-square tests, measures of association, and measures of agreement for contingency tables. Other procedures to consider for counting are PROC TABULATE for more general table layouts; PROC REPORT for tables and customized summaries, PROC CHART for bar charts and other graphical representations; and PROC UNIVARIATE with the FREQ option for one-way frequency tables. When you want to fit models to categorical data, use a SAS/STAT procedure such as CATMOD, GENMOD, LOGISTIC, PHREG, or PROBIT. For more information on selecting the appropriate statistical analyses, refer to An Introduction to Categorical Data Analysis (Agresti, 1996) or Categorical Data Analysis Using the SAS System (Stokes, et al. 1995).
Procedure Syntax

Tip: Supports the Output Delivery System (see Chapter 2, “Fundamental Concepts for Using Base SAS Procedures”)

Reminder: You can use the FORMAT, LABEL, and WHERE statements. See Chapter 3, “Statements with the Same Function in Multiple Procedures,” for details. You can also use any global statements as well. See Chapter 2, “Fundamental Concepts for Using Base SAS Procedures,” for a list.

```sas
PROC FREQ <option(s)>;
   BY <DESCENDING> variable-1
       ...<DESCENDING> variable-n>
       <NOTSORTED>;
   EXACT statistic-keyword(s)<option(s)>;
   OUTPUT statistic-keyword(s) <OUT=SAS-data-set>;
   TABLES request(s) <option(s)>;
   TEST statistic-keyword(s);
   WEIGHT variable;
```

<table>
<thead>
<tr>
<th>To do this</th>
<th>Use this option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate separate frequency or crosstabulation tables for each BY group</td>
<td>BY</td>
</tr>
<tr>
<td>Request exact tests for specified statistics</td>
<td>EXACT</td>
</tr>
<tr>
<td>Create an output data set that contains specified statistics</td>
<td>OUTPUT</td>
</tr>
<tr>
<td>Specify frequency or crosstabulation tables and request tests and measures of association</td>
<td>TABLES</td>
</tr>
<tr>
<td>Request asymptotic tests for measures of association and agreement</td>
<td>TEST</td>
</tr>
<tr>
<td>Identify a variable whose values weight each observation</td>
<td>WEIGHT</td>
</tr>
</tbody>
</table>

PROC FREQ Statement

```sas
PROC FREQ <option(s)>;
```

<table>
<thead>
<tr>
<th>To do this</th>
<th>Use this option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the input data set</td>
<td>DATA=</td>
</tr>
<tr>
<td>Control printed output</td>
<td></td>
</tr>
<tr>
<td>Begin the next one-way table on the current page even if the entire table does not fit on that page</td>
<td>COMPRESS</td>
</tr>
</tbody>
</table>
Options

COMPRESS

begins to display the next one-way frequency table on the same page as the preceding one-way table when there is enough space to begin the table. By default, the next one-way table begins on the current page only if the entire table fits on that page.

Restriction: not valid with PAGE

Tip: COMPRESS saves paper and screen space.

DATA=SAS-data-set

specifies the input SAS data set.

Main discussion: “Procedure Concepts” on page 18

FORMCHAR *(position(s))*='*formatting-character(s)*'

defines the characters to use for constructing the outlines and dividers for the cells of crosstabulation tables.

position(s)

identifies the position of one or more characters in the SAS formatting-character string. A space or a comma separates the positions.

Default: Omitting *(position(s))*, is the same as specifying all 20 possible SAS formatting characters, in order.

Range: PROC FREQ uses formatting characters 1, 2, and 7. Table 20.1 on page 505 shows the formatting characters that PROC FREQ uses.

formatting-character(s)

lists the characters to use for the specified positions. PROC FREQ assigns characters in formatting-character(s) to position(s), in the order that they are listed. For instance, the following option assigns the asterisk (*) to the second formatting character, the pound sign (#) to the seventh character, and does not alter the remaining characters:

```
formchar(2,7)="*#"
```

Interaction: The SAS system option FORMCHAR= specifies the default formatting characters. The system option defines the entire string of formatting characters. Specifying the FORMCHAR= option in a procedure can redefine selected characters.

Tip: You can use any character in formatting-characters, including hexadecimal characters. If you use hexadecimal characters, you must put an x after the closing quote. For example the following option assigns the hexadecimal character 2D to the second formatting character, the hexadecimal character 7C to the seventh character, and does not alter the remaining characters:
The FREQ Procedure

/52

PROC FREQ Statement 505

formchar(2,7)=’2D7C’x

Tip: Specifying all blanks for formatting-character(s) produces tables with no outlines or dividers:
formchar (1,2,7)=’’
(3 blanks)

See also: For information on which hexadecimal codes to use for which characters, consult the documentation for your hardware.

Table 20.1 Formatting Characters Used by PROC FREQ

<table>
<thead>
<tr>
<th>Position</th>
<th>Default</th>
<th>Used to draw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Vertical separators</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Horizontal separators</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>Intersections of vertical and horizontal separators</td>
</tr>
</tbody>
</table>

NOPRINT
suppresses all displayed output from PROC FREQ.

Interaction: NOPRINT in the PROC statement disables the Output Delivery System for the entire PROC step.

Tip: Use NOPRINT when you want to create only an output data set with the OUTPUT statement or with the OUT= option in the TABLES statement.

Note: NOPRINT is also available in the TABLES statement where it suppresses the tables, but displays the requested statistics. △

ORDER=DATA | FORMATTED | FREQ | INTERNAL
orders the values of the frequency and crosstabulation table variables according to the specified order, where

DATA
orders values according to their order in the input data set.

FORMATTED
orders values by their formatted values. This order is operating environment-dependent. By default, the order is ascending.

FREQ
orders values by descending frequency count.

INTERNAL
orders values by their unformatted values, which yields the same order as PROC SORT. This order is operating environment-dependent.

Default: INTERNAL

Restriction: ORDER= does not apply to missing values, which always appear first.

Featured in: Example 2 on page 574 and Example 3 on page 576

PAGE
displays only one table per page.

Default: displays multiple tables per page as space permits
BY Statement

Calculates separate analysis for each BY group.
Main discussion: “Statements” on page 62
Featured in: Example 2 on page 574

BY <DESCENDING> variable1 <...<DESCENDING> variablen><NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify more than one variable. If you do not use the NOTSORTED option in the BY statement, the observations in the data set must either be sorted by all the variables that you specify, or they must be indexed appropriately.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order. The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of BY variables is suspended for BY-group processing when you use the NOTSORTED option. In fact, the procedure does not use an index if you specify NOTSORTED. The procedure defines a BY group as a set of contiguous observations that have the same values for all BY variables. If observations with the same values for the BY variables are not contiguous, the procedure treats each contiguous set as a separate BY group.

EXACT Statement

Requests exact tests or confidence bounds for the specified statistics.
Requirements: TABLES statement
Main discussion: “Exact Statistics” on page 563
Featured in: Example 4 on page 579
EXACT statistic-keyword(s)</option(s)>

Required Arguments

statistic-keyword(s)

specifies the statistics for which to provide exact tests or confidence bounds. PROC FREQ can compute exact p-values for the following hypothesis tests: chi-square goodness-of-fit for one-way tables; Pearson chi-square, likelihood-ratio chi-square, Mantel-Haenszel chi-square, Fisher's exact test, Jonckheere-Terpstra test, Cochran-Armitage test for trend, and McNemar's test for two-way tables. PROC FREQ can also compute exact p-values for tests of hypotheses that the following statistics are equal to zero: Pearson correlation coefficient, Spearman correlation coefficient, simple kappa coefficient, and weighted kappa coefficient. PROC FREQ can compute exact p-values for the binomial proportion test, as well as an exact confidence bound for the binomial proportion. Additionally, PROC FREQ can compute exact confidence bounds for odds ratios for 2x2 tables.

The statistic keywords are identical to options in the TABLES statement and keywords in the OUTPUT statement. You can request exact computations for groups of statistics by using keywords that are identical to the following TABLES statement options: CHISQ, MEASURES, and AGREE. For example, when you specify CHISQ in the EXACT statement, PROC FREQ computes exact p-values for the available CHISQ statistics (Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square). You request exact p-values for an individual statistic by specifying a keyword shown in .

Note: PROC FREQ computes exact tests by using fast and efficient algorithms that are superior to direct enumeration. This technique is appropriate when a data set is small, sparse, skewed, or heavily tied. For some large problems, exact computations may require a large amount of time or memory. Consider using the asymptotic tests for such problems. See “Exact Statistics” on page 563 for more information.

Table 20.2 EXACT Statement Statistic-keywords and Required TABLES Statement Options

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Exact statistics computed</th>
<th>Required TABLES statement option</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGREE</td>
<td>McNemar's test for 2x2 tables and tests for the simple kappa coefficient and the weighted kappa coefficient</td>
<td>AGREE</td>
</tr>
<tr>
<td>BINOMIAL</td>
<td>binomial proportion test for one-way tables</td>
<td>BINOMIAL</td>
</tr>
<tr>
<td>CHISQ</td>
<td>chi-square goodness-of-fit test for one-way tables; Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square tests for two-way tables</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>FISHER</td>
<td>EXACT</td>
<td>Fisher's exact test</td>
</tr>
<tr>
<td>JT</td>
<td>Jonckheere-Terpstra test</td>
<td>JT</td>
</tr>
<tr>
<td>KAPPA</td>
<td>test for the simple kappa coefficient</td>
<td>AGREE</td>
</tr>
</tbody>
</table>
Keyword | Exact statistics computed | Required TABLES statement option
---|---|---
LRCHI | likelihood-ratio chi-square test | ALL, CHISQ
MCNEM | McNemar’s test | AGREE
MEASURES | tests for the Pearson correlation coefficient and the Spearman correlation and the odds ratio confidence bounds for 2×2 tables | ALL, MEASURES
MHCHI | Mantel-Haenszel chi-square test | ALL, CHISQ
OR | odds ratio confidence bounds for 2×2 tables | ALL, MEASURES, RELRISK
PCHI | Pearson chi-square test | ALL, CHISQ
PCORR | test for the Pearson correlation coefficient | ALL, MEASURES
SCORR | test for the Spearman correlation coefficient | ALL, MEASURES
TREND | Cochran-Armitage test for trend | TREND
WTKAP | test for the weighted kappa coefficient | AGREE

* ALL and CHISQ compute Fisher’s exact test only for 2×2 tables.

Options

MAXTIME=value

specifies the maximum time (in seconds) that PROC FREQ uses to compute an exact p-value. If the procedure does not complete the computation within the specified time, the computation terminates.

Range: a positive number

See also: “Computational Resources” on page 565

Featured in: Example 7 on page 590

Using TABLES Statement Options with the EXACT Statement

Table 20.2 on page 507 lists the available statistic keywords and the exact statistics that are computed. If you use only one TABLES statement, you do not need to specify options in the TABLES statement to compute the statistics that the EXACT statement requests. PROC FREQ automatically invokes the corresponding TABLES statement option when you request exact computations. However, when you use multiple TABLES statements, and you want exact computations, you must specify options in the TABLES statement to compute the desired statistics. Then PROC FREQ performs exact computations for all statistics that are also specified in the EXACT statement.
OUTPUT Statement

Creates a SAS data set with the statistics that PROC FREQ computes for the last TABLES statement request. The variables contain statistics for each two-way table or stratum, as well as summary statistics across all strata.

Requirements:
TABLES statement

Restriction:
Only one OUTPUT statement is allowed.

Tip:
Use the Output Delivery System to create a SAS data set from any piece of PROC FREQ output.

Main discussion:
“Output Data Sets” on page 569

Featured in:
Example 5 on page 583

```
OUTPUT statistic-keyword(s) <OUT=SAS-data-set>;
```

Options

OUT=SAS-data-set
names the output data set that contains statistics for the last TABLES statement request. If you omit OUT=, the data set is named DATAn, where n is the smallest integer that makes the name unique.

Default:
DATAn

statistic-keyword(s)
specifies the statistics that you want in the new data set. Available statistics are those produced by PROC FREQ for each one-way or two-way table, as well as summary statistics across all strata. When you request a statistic, the OUTPUT data set contains that estimate or test statistic, as well as any associated standard error, degrees of freedom, confidence bounds, and p-values.

You can save the output statistics by using keywords that are identical to group options in the TABLES statement: AGREE, ALL, CHISQ, CMH, and MEASURES. Alternatively, you can request an individual statistic by specifying a keyword shown in Table 20.3 on page 510.

Using the TABLES Statement with the OUTPUT Statement

In order to specify that the OUTPUT data set contain a particular statistic, you must have PROC FREQ compute the statistic by using the corresponding option in the TABLES statement or the EXACT statement. For example with a 2×2 table, you cannot specify the keyword OR (odds ratio) in the OUTPUT statement without also specifying ALL, MEASURES, or RELRISK in the TABLES statement.

If you use multiple TABLES statements, the contents of the OUTPUT data set correspond to the last TABLES statement. If you use multiple table requests in a TABLES statement, the contents of the OUTPUT data set correspond to the last table request.
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Output data set statistics</th>
<th>Required TABLES statement option</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGREE</td>
<td>McNemar's test for 2×2 tables, simple kappa coefficient, and weighted kappa coefficient. For square tables with more than two response categories, Bowker's test of symmetry. For multiple strata, overall simple and weighted kappa statistics, and tests for equal kappas among strata. For multiple strata with two response categories, Cochran's Q test.</td>
<td>AGREE</td>
</tr>
<tr>
<td>AJ CHI</td>
<td>continuity adjusted chi-square for 2×2 tables</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>ALL</td>
<td>all statistics under CHISQ, MEASURES, CMH, and the number of nonmissing subjects</td>
<td>ALL</td>
</tr>
<tr>
<td>BDCHI</td>
<td>Breslow-Day test</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>BINOMIAL</td>
<td>binomial proportion statistics for one-way tables</td>
<td>BINOMIAL</td>
</tr>
<tr>
<td>CHISQ</td>
<td>chi-square goodness-of-fit test for one-way tables; for two-way tables, Pearson chi-square, likelihood ratio chi-square, continuity-adjusted chi-square for 2×2 tables, Mantel-Haenszel chi-square, Fisher's exact test for 2×2 tables, phi coefficient, contingency coefficient, and Cramer's V</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>CMH</td>
<td>Cochran-Mantel-Haenszel correlation, row mean scores (ANOVA), and general association statistics; for 2×2 tables, logit and Mantel-Haenszel adjusted odds ratios, relative risks, and Breslow-Day test</td>
<td>ALL, CMH</td>
</tr>
<tr>
<td>CMH1</td>
<td>same as CMH, but excludes general association and row mean scores (ANOVA) statistics</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>CMH2</td>
<td>same as CMH, but excludes the general association statistic</td>
<td>ALL, CMH, CMH2</td>
</tr>
<tr>
<td>CMHCOR</td>
<td>Cochran-Mantel-Haenszel correlation statistic</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>CMHGA</td>
<td>Cochran-Mantel-Haenszel general association statistic</td>
<td>ALL, CMH</td>
</tr>
<tr>
<td>CMHRMS</td>
<td>Cochran-Mantel-Haenszel row mean scores (ANOVA) statistic</td>
<td>ALL, CMH, CMH2</td>
</tr>
<tr>
<td>COCHQ</td>
<td>Cochran's Q</td>
<td>AGREE</td>
</tr>
<tr>
<td>CONTGY</td>
<td>contingency coefficient</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>CRAMV</td>
<td>Cramer's V</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>EQKAP</td>
<td>test for equal simple kappas</td>
<td>AGREE</td>
</tr>
<tr>
<td>EQWKP</td>
<td>test for equal weighted kappas</td>
<td>AGREE</td>
</tr>
<tr>
<td>FISHER</td>
<td>Fisher's exact test</td>
<td>ALL*, CHISQ*, FISHER</td>
</tr>
<tr>
<td>EXACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMMA</td>
<td>gamma</td>
<td>ALL, MEASURES</td>
</tr>
<tr>
<td>JT</td>
<td>Jonckheere-Terpstra test</td>
<td>JT</td>
</tr>
<tr>
<td>KAPPA</td>
<td>simple kappa coefficient</td>
<td>AGREE</td>
</tr>
<tr>
<td>KENTB</td>
<td>Kendall's tau-b</td>
<td>ALL, MEASURES</td>
</tr>
<tr>
<td>LAMCR</td>
<td>lambda asymmetric (C</td>
<td>R)</td>
</tr>
<tr>
<td>LAMDAS</td>
<td>lambda symmetric</td>
<td>ALL, MEASURES</td>
</tr>
</tbody>
</table>

Table 20.3 OUTPUT Statement Statistic-keywords and Required TABLES Statement Options
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Output data set statistics</th>
<th>Required TABLES statement option</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMRC</td>
<td>lambda asymmetric (R</td>
<td>C)</td>
</tr>
<tr>
<td>LGOR</td>
<td>adjusted logit odds ratio</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>LGRRC1</td>
<td>adjusted logit column 1 relative risk</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>LGRRC2</td>
<td>adjusted logit column 2 relative risk</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>LRCHI</td>
<td>likelihood ratio chi-square</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>MCNEM</td>
<td>McNemar's test</td>
<td>AGREE</td>
</tr>
<tr>
<td>MEASURES</td>
<td>gamma, Kendall's tau-b, Stuart's tau-c, Somers' D (C</td>
<td>R), Somers' D (R</td>
</tr>
<tr>
<td>MHCHI</td>
<td>Mantel-Haenszel chi-square</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>MHOR</td>
<td>adjusted Mantel-Haenszel odds ratio</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>MHRRC1</td>
<td>adjusted Mantel-Haenszel column 1 relative risk</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>MHRRC2</td>
<td>adjusted Mantel-Haenszel column 2 relative risk</td>
<td>ALL, CMH, CMH1, CMH2</td>
</tr>
<tr>
<td>N</td>
<td>number of nonmissing subjects for the stratum</td>
<td></td>
</tr>
<tr>
<td>NMISS</td>
<td>number of missing subjects for the stratum</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
<td>ALL, MEASURES, RELRISK</td>
</tr>
<tr>
<td>PCHI</td>
<td>chi-square goodness-of-fit test for one-way tables; for 2-way tables, Pearson chi-square</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>PCORR</td>
<td>Pearson correlation coefficient</td>
<td>ALL, MEASURES</td>
</tr>
<tr>
<td>PHI</td>
<td>phi coefficient</td>
<td>ALL, CHISQ</td>
</tr>
<tr>
<td>PLCORR</td>
<td>polychoric correlation coefficient</td>
<td>PLCORR</td>
</tr>
<tr>
<td>RDIF1</td>
<td>column 1 risk difference (row 1 - row 2)</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RDIF2</td>
<td>column 2 risk difference (row 1 - row 2)</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RELRISK</td>
<td>odds ratio and relative risks for 2x2 tables</td>
<td>ALL, MEASURES, RELRISK</td>
</tr>
<tr>
<td>RISKDIFF</td>
<td>risks and risk differences</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RISKDIFF1</td>
<td>column 1 risks and risk difference</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RISKDIFF2</td>
<td>column 2 risks and risk difference</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RRC1</td>
<td>column 1 relative risk</td>
<td>ALL, MEASURES, RELRISK</td>
</tr>
<tr>
<td>RRC2</td>
<td>column 2 relative risk</td>
<td>ALL, MEASURES, RELRISK</td>
</tr>
<tr>
<td>RSK1</td>
<td>column 1 risk (overall)</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RSK11</td>
<td>column 1 risk, for row 1</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RSK12</td>
<td>column 2 risk, for row 1</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RSK2</td>
<td>column 2 risk (overall)</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RSK21</td>
<td>column 1 risk, for row 2</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>RSK22</td>
<td>column 2 risk, for row 2</td>
<td>RISKDIFF</td>
</tr>
</tbody>
</table>
TABLES Statement

Requests one-way to \(n \)-way frequency and crosstabulation tables and computes the statistics for these tables.

Default: If you omit the TABLES statement, PROC FREQ generates one-way frequency tables for all data set variables that are not listed in the other statements.

Featured in: Example 1 on page 571

```plaintext
TABLES request(s) <</option(s)>;
```

Required Arguments

request(s)

specifies the frequency and crosstabulation tables to produce. A request is composed of one variable name or several variable names that are separated by asterisks. To request a one-way frequency table, use a single variable. To request a two-way crosstabulation table, use an asterisk between two variables. To request a multiway table (an \(n \)-way table, where \(n > 2 \)), separate the desired variables with asterisks. The unique values of these variables form rows, columns, and strata of the table.

For two-way to multiway tables, the values of the last variable form the crosstabulation table columns while the values of the next-to-last variable form the rows. Each level (or combination of levels) of the other variables forms one stratum. PROC FREQ produces a separate crosstabulation table for each stratum. For example, the TABLES statement request \(A*B*C*D \) produces \(k \) tables, where \(k \) is the number of different combinations of values for \(A \) and \(B \). Each table lists the values for \(C \) down the side and the values for \(D \) across the top.

Keyword Output data set statistics Required TABLES statement option

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Output data set statistics</th>
<th>Required TABLES statement option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORR</td>
<td>Spearman correlation coefficient</td>
<td>ALL, MEASURES</td>
</tr>
<tr>
<td>SMDCR</td>
<td>Somers' (D) (C</td>
<td>R)</td>
</tr>
<tr>
<td>SMDRC</td>
<td>Somers' (D) (R</td>
<td>C)</td>
</tr>
<tr>
<td>STUTC</td>
<td>Stuart's tau-c</td>
<td>ALL, MEASURES</td>
</tr>
<tr>
<td>TREND</td>
<td>Cochran-Armitage test for trend</td>
<td>TREND</td>
</tr>
<tr>
<td>TSYM</td>
<td>Bowker's test of symmetry</td>
<td>AGREE</td>
</tr>
<tr>
<td>U</td>
<td>symmetric uncertainty coefficient</td>
<td>ALL, MEASURES</td>
</tr>
<tr>
<td>UCR</td>
<td>uncertainty coefficient (C</td>
<td>R)</td>
</tr>
<tr>
<td>URC</td>
<td>uncertainty coefficient (R</td>
<td>C)</td>
</tr>
<tr>
<td>WTKAP</td>
<td>weighted kappa coefficient</td>
<td>AGREE</td>
</tr>
</tbody>
</table>

* ALL and CHISQ compute Fisher’s exact test only for \(2 \times 2 \) tables. Use the FISHER option to compute Fisher’s exact test for general \(r \times c \) tables.
You can use multiple TABLES statements in the PROC FREQ step. PROC FREQ builds all the table requests in one pass of the data so that there is essentially no loss of efficiency. You can also specify any number of table requests in a single TABLES statement. To specify multiple table requests quickly, use a grouping syntax by placing parentheses around several variables and joining other variables or variable combinations. For example, the following statements illustrate grouping syntax:

<table>
<thead>
<tr>
<th>Request</th>
<th>Equivalent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>tables a*(b c);</td>
<td>tables ab ac;</td>
</tr>
<tr>
<td>tables (a b)*(c d);</td>
<td>tables ac bc ad bd;</td>
</tr>
<tr>
<td>tables (a b c)*d;</td>
<td>tables ad bd c*d;</td>
</tr>
<tr>
<td>tables a--c;</td>
<td>tables a b c;</td>
</tr>
<tr>
<td>tables (a--c)*d;</td>
<td>tables ad bd c*d;</td>
</tr>
</tbody>
</table>

Without Options

If you request a one-way frequency table for a variable without specifying options, PROC FREQ produces frequencies, cumulative frequencies, percentages of the total frequency, and cumulative percentages for each value of the variable. If you request a two-way or n-way crosstabulation table without specifying options, PROC FREQ produces crosstabulation tables that include cell frequencies, cell percentages of the total frequency, cell percentages of row frequencies, and cell percentages of column frequencies. The procedure excludes observations with missing values from the table, but displays the total frequency of missing observations below each table.

Options

<table>
<thead>
<tr>
<th>To do this</th>
<th>Use this option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control statistical analysis</td>
<td></td>
</tr>
<tr>
<td>Request tests and measures of classification agreement</td>
<td>AGREE</td>
</tr>
<tr>
<td>Request tests and measures of association produced by CHISQ,</td>
<td>ALL</td>
</tr>
<tr>
<td>MEASURES, and CMH</td>
<td></td>
</tr>
<tr>
<td>Set the confidence level for confidence bounds</td>
<td>ALPHA=</td>
</tr>
<tr>
<td>Request binomial proportion, confidence bounds, and test for one-way</td>
<td>BINOMIAL</td>
</tr>
<tr>
<td>tables</td>
<td></td>
</tr>
<tr>
<td>Request chi-square tests and measures of association based on chi-square</td>
<td>CHISQ</td>
</tr>
<tr>
<td>Request confidence limits for the MEASURES statistics</td>
<td>CL</td>
</tr>
<tr>
<td>Request all Cochran-Mantel-Haenszel statistics, adjusted relative risks,</td>
<td>CMH</td>
</tr>
<tr>
<td>and odds ratios</td>
<td></td>
</tr>
<tr>
<td>Request adjusted relative risks and odds ratios and CMH correlation</td>
<td>CMH1</td>
</tr>
<tr>
<td>statistic</td>
<td></td>
</tr>
<tr>
<td>Request adjusted relative risks and odds ratios, CMH correlation, and</td>
<td>CMH2</td>
</tr>
<tr>
<td>row mean scores (ANOVA) statistic</td>
<td></td>
</tr>
<tr>
<td>Specify convergence criterion to compute polychoric correlation</td>
<td>CONVERGE=</td>
</tr>
<tr>
<td>To do this</td>
<td>Use this option</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Request Fisher’s exact test for tables larger than 2x2</td>
<td>FISHER</td>
</tr>
<tr>
<td>Request Jonckheere-Terpstra test</td>
<td>JT</td>
</tr>
<tr>
<td>Specify maximum number of iterations to compute polychoric correlation</td>
<td>MAXITER=</td>
</tr>
<tr>
<td>Request measures of association and their asymptotic standard errors</td>
<td>MEASURES</td>
</tr>
<tr>
<td>Treat missing values as nonmissing</td>
<td>MISSING</td>
</tr>
<tr>
<td>Request polychoric correlation</td>
<td>PLCORR</td>
</tr>
<tr>
<td>Request relative risk measures for 2x2 tables</td>
<td>RELRISK</td>
</tr>
<tr>
<td>Request risks and risk differences for 2x2 tables</td>
<td>RISKDIFF</td>
</tr>
<tr>
<td>Specify the type of row and column scores</td>
<td>SCORES=</td>
</tr>
<tr>
<td>Specify expected frequencies for a one-way table chi-square test</td>
<td>TESTF=</td>
</tr>
<tr>
<td>Specify expected proportions for a one-way table chi-square test</td>
<td>TESTP=</td>
</tr>
<tr>
<td>Request Cochran-Armitage test for trend</td>
<td>TREND</td>
</tr>
</tbody>
</table>

Control additional table information

- Report each cell’s contribution to the total Pearson chi-square statistic | CELLCHI2
- Display the cumulative column percentage in each cell | CUMCOL
- Display the deviation of the cell frequency from the expected value for each cell | DEVIATION
- Display the expected cell frequency for each cell | EXPECTED
- Display missing value frequencies | MISSPRINT
- List all possible combinations of variable levels even when a combination does not occur | SPARSE
- Display percentage of total frequency on n-way tables when n>2 | TOTPCT

Control displayed output

- Suppress the column percentage for each cell | NOCOL
- Suppress the cumulative frequencies and the cumulative percentages in one-way frequency tables and in list format | NOCUM
- Suppress the frequency count for each cell | NOFREQ
- Suppress the percentage, row percentage, and column percentage in crosstabulation tables, or percentages and cumulative percentages in one-way frequency tables and in list format | NOPERCENT
- Suppress the display of tables but report the statistics | NOPRINT
- Suppress the row percentage for each cell | NOROW
- Display two-way to n-way tables in list format | LIST
- Display the kappa coefficient weights | PRINTKWT
- Display the row and the column scores | SCOROUT
To do this | Use this option
--- | ---
Use a field 8 positions wide to display the cell frequencies between 1.E7 and 1.E8 | V5FMT
Create an output data set |
Specify an output data set to contain variable values and frequency counts | OUT=
Include the expected frequency of each cell in the output data set | OUTEXPECT
Include the percentage of column frequency, row frequency, and two-way table frequency in the output data set | OUTPCT

AGREE <WT=type>

requests tests and measures of classification agreement for square tables. The AGREE option provides McNemar’s test for 2×2 tables and Bowker’s test of symmetry for tables with more than two response categories. The AGREE option also produces the simple kappa statistic, the weighted kappa statistic, their asymptotic standard errors, and the corresponding confidence bounds. When there are multiple strata, PROC FREQ computes overall simple and weighted kappa statistics, as well as tests for equal kappas among strata. When there are multiple strata and two response categories, PROC FREQ computes Cochran’s Q test.

(WT=type) specifies the type of weights that PROC FREQ uses to compute the weighted kappa coefficient, where type is the following:

- **CA** Cicchetti-Allison weights
- **FC** Fleiss-Cohen weights

Default: CA

Main discussion: “Weighted Kappa Coefficient” on page 553

Restriction: The table must be square.

Tip: You can specify PRINTKWT to display the kappa coefficient weights.

Main discussion: “Tests and Measures of Agreement” on page 550

Featured in: Example 9 on page 595

ALL

requests all tests and measures that are computed by the CHISQ, MEASURES, and CMH options.

Interaction: CMH1 and CMH2 control which CMH statistics PROC FREQ computes.

ALPHA=p

sets the confidence level for confidence bounds. The percentage for the confidence bounds is $(1-p) \times 100$. Using ALPHA=0.05 results in 95 percent confidence bounds. If p is between 0 and 1 but is outside the range, PROC FREQ uses the closest range endpoint. For example, if p=0.000001, PROC FREQ uses 0.0001 to determine confidence bounds.

Default: 0.05

Range: $0.0001 \leq p \leq 0.9999$
BINOMIAL <(P=value)>

computes the binomial proportion for one-way tables. This is the proportion of observations for the first variable level that appears in the output. BINOMIAL also computes the asymptotic standard error, asymptotic and exact confidence bounds, and the asymptotic test for the binomial proportion. To specify the null hypothesis proportion value for the test, use P=.

Default: P=0.5

Restriction: for one-way tables

Interaction: To request an exact test for the binomial proportion, specify BINOMIAL in the EXACT statement.

Main Discussion: “Binomial Proportion” on page 542

Featured in: Example 3 on page 576

CELLCHI2

displays each cell’s contribution to the total Pearson chi-square statistic, which is computed as \((\text{frequency} - \text{expected})^2/\text{expected}\).

Interaction: CELLCHI2 is valid for contingency tables but has no effect on tables that are produced with LIST.

CHISQ

computes chi-square tests of homogeneity or independence for two-way tables, and computes measures of association based on chi-square for two-way tables. The tests include Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square. The measures include the phi coefficient, the contingency coefficient, and Cramer’s V. For \(2 \times 2\) tables, CHISQ includes Fisher’s exact test and the continuity-adjusted chi-square. For one-way tables, CHISQ computes a chi-square goodness-of-fit test for equal proportions. If you specify the null hypothesis proportions with the TESTP= option, then CHISQ computes a chi-square goodness-of-fit test for the specified proportions. If you specify null hypothesis frequencies with the TESTF= option, CHISQ computes a chi-square goodness-of-fit test for the specified frequencies.

Main discussion: “Chi-Square Tests and Measures” on page 528

Featured in: Example 4 on page 579 and Example 5 on page 583

CL

requests confidence bounds for the MEASURES statistics.

Interaction: If you omit MEASURES, CL invokes MEASURES.

Interaction: PROC FREQ determines the confidence coefficient using ALPHA=, which by default equals 0.05 and produces 95 percent confidence bounds.

Main discussion: “Measures of Association” on page 532

Featured in: Example 7 on page 590

CMH

computes Cochran-Mantel-Haenszel statistics, which test for association between the row and column variables after adjusting for the remaining variables in a multiway table. In addition, for \(2 \times 2\) tables, PROC FREQ computes adjusted Mantel-Haenszel and logit estimates of the odds ratio and relative risks as well as the corresponding confidence bounds. For the stratified \(2 \times 2\) case, PROC FREQ computes the Breslow-Day test for homogeneity of odds ratios.

Interaction: CMH1 and CMH2 control the number of CMH statistics that PROC FREQ computes.
Main discussion: “Cochran-Mantel-Haenszel Statistics” on page 556
Featured in: Example 6 on page 587

CMH1
requests the Cochran-Mantel-Haenszel correlation statistic and, for 2x2 tables, adjusted Mantel-Haenszel and logit estimates of the odds ratio and relative risks as well as the corresponding confidence bounds. For the stratified 2x2 case, PROC FREQ computes the Breslow-Day test for homogeneity of odds ratios. Except for 2x2 tables, CMH1 requires less memory than CMH, which can require an enormous amount for large tables.

CMH2
requests the Cochran-Mantel-Haenszel correlation statistic, row mean scores (ANOVA) statistic and, for 2x2 tables, adjusted Mantel-Haenszel and logit estimates of the odds ratio and relative risks as well as the corresponding confidence bounds. For the stratified 2x2 case, PROC FREQ computes the Breslow-Day test for homogeneity of odds ratios. Except for tables with two columns, CMH2 requires less memory than CMH, which can require an enormous amount for large tables.

Featured in: Example 8 on page 593

CONVERGE = c
specifies the convergence criterion for computing the polychoric correlation using the PLCORR option. Iterative computation of the polychoric correlation stops when the convergence measure falls below the value of CONVERGE =, or when the number of iterations that is specified by the MAXITER = option is exceeded, whichever happens first.

Alias: CONV=
Default: 0.0001
Range: a positive number
Main discussion: “Polychoric Correlation” on page 540

CUMCOL
displays the cumulative column percentages in cells of the crosstabulation table.

DEVIATION
displays the deviation of the cell frequency from the expected frequency for each cell of the crosstabulation table.
Interaction: DEVIATION is valid for crosstabulation tables but has no effect on tables produced with LIST.

Featured in: Example 5 on page 583

EXPECTED
displays the expected cell frequencies under the hypothesis of independence (or homogeneity).
Interaction: EXPECTED is valid for contingency tables but has no effect on tables produced with LIST.

Featured in: Example 5 on page 583

FISHER
computes Fisher’s exact test for tables that are larger than 2x2. You can also request Fisher’s exact test by specifying FISHER in the EXACT statement.
Alias: EXACT
Interaction: If you omit CHISQ, FISHER invokes CHISQ.
Interaction: ALL does not invoke this option.
Main discussion: “Fisher’s Exact Test” on page 531

CAUTION:
For large tables, PROC FREQ may require a large amount of time or memory to compute exact p-values. See “Computational Resources” on page 565 for more information.

JT
performs the Jonckheere-Terpstra test.
Main discussion: “Jonckheere-Terpstra Test” on page 548

LIST
displays two-way to n-way tables in a list format rather than as crosstabulation tables.
Restriction: PROC FREQ ignores LIST when you request statistical tests or measures of association.

MAXITER=n
specifies the maximum number of iterations for computing the polychoric correlation using the PLCORR option. Iterative computation of the polychoric correlation stops when the number of iterations that is specified by MAXITER= is exceeded, or when the convergence measure falls below the value of the CONVERGE= option, whichever happens first.
Default: 20
Range: an integer between 0 and 32767
Main discussion: “Polychoric Correlation” on page 540

MEASURES
requests several measures of association and their asymptotic standard errors (ASE). The measures include gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D, Pearson and Spearman correlation coefficients, lambda (asymmetric and symmetric), uncertainty coefficients (asymmetric and symmetric) and, for 2x2 tables, the odds ratio, column 1 relative risk, column 2 relative risk, and the corresponding confidence bounds.
Interaction: CL requests confidence bounds.
Main discussion: “Measures of Association” on page 532
Featured in: Example 7 on page 590

MISSING
treats missing values as nonmissing and includes them in calculations of percentages and other statistics.
Main discussion: “Missing Values” on page 566

MISSPRINT
displays missing value frequencies for all tables, even though PROC FREQ does not use the frequencies in the calculation of statistics.
Main discussion: “Missing Values” on page 566

NOCOL
suppresses the column percentages in cells of the crosstabulation table.
Featured in: Example 5 on page 583
NOCUM
suppresses the cumulative frequencies and cumulative percentages for one-way frequency tables and for frequencies in list format.

Featured in: Example 2 on page 574

NOFREQ
suppresses the cell frequencies for a crosstabulation table. This also suppresses frequencies for row totals.

NOPERCENT
suppresses the cell percentages, the row total percentages, and the column total percentages for a crosstabulation table. For one-way frequency tables and frequencies in list format, suppresses the percentages and the cumulative percentages.

NOPRINT
suppresses the frequency and crosstabulation tables, but displays all requested tests and statistics.

Featured in: Example 6 on page 587

NOROW
suppresses the row percentages in cells of the crosstabulation table.

Featured in: Example 5 on page 583

OUT=SAS-data-set
names the output data set that contains variable values and frequency counts. The variable COUNT contains the frequencies and the variable PERCENT contains the percentages. If more than one table request appears in the TABLES statement, the contents of the data set correspond to the last table request in the TABLES statement.

Main discussion: “Output Data Sets” on page 569

See also: OUTEXPECT and OUTPCT

Featured in: Example 1 on page 571

OUTEXPECT
includes the expected frequency in the output data set when you specify the OUT= option. The variable EXPECTED contains the expected frequency for each table cell.

Main discussion: “Output Data Sets” on page 569

Featured in: Example 1 on page 571

OUTPCT
includes the following additional variables in the output data set when you specify the OUT= option:

PCT_COL
the percentage of column frequency

PCT_ROW
the percentage of row frequency

PCT_TABL
the percentage of stratum frequency, for n-way tables where n > 2.

Main discussion: “Output Data Sets” on page 569
PLCORR
computes the polychoric correlation coefficient. For 2×2 tables, this statistic is more commonly known as the tetrachoric correlation coefficient, and is labeled as such in the displayed output.

Interaction: If you omit MEASURES, PLCORR invokes MEASURES.
Main discussion: “Polychoric Correlation” on page 540
See also: CONVERGE= and MAXITER=

PRINTKWT
requests that PROC FREQ display the kappa coefficient weights.
Interaction: You must specify AGREE to compute the kappa coefficients. The WT= option controls how PROC FREQ computes the kappa coefficient weights.
Main discussion: “Weighted Kappa Coefficient” on page 553

RELRIK
requests relative risk measures for 2×2 tables. These measures include the odds ratio, column 1 relative risk, and column 2 relative risk.
Main discussion: “Odds Ratio and Relative Risks for 2×2 Tables” on page 545
Featured in: Example 4 on page 579

RISKDIFF
requests column 1 and 2 risks (or binomial proportions), risk differences, and their confidence bounds for 2×2 tables.
Alias: PDIFF, RDIFF
Main discussion: “Risks and Risk Differences” on page 544

SCORES=type
specifies the type of row and column scores that PROC FREQ uses with the Mantel-Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted kappa coefficient, and Cochran-Mantel-Haenszel statistics where type is MODRIDI
RANK
RIDIT
TABLE

By default, the row or column scores are the integers 1, 2, ... for character variables and the actual variable values for numeric variables. Using other types of scores yields nonparametric analyses.
Default: TABLE
Main discussion: “Scores” on page 527
Featured in: Example 8 on page 593

SCOROUT
displays the row and the column scores. You specify the score type with the SCORES= option. PROC FREQ uses the scores when it calculates the Mantel-Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted kappa coefficient, or Cochran-Mantel-Haenszel statistics.
Restriction: SCOROUT displays the row and column scores only when statistics are computed for two-way tables.
Tip: To store the scores in an output data set, use the Output Delivery System.
Main discussion: “Scores” on page 527
See also: SCORES= on page 520

SPARSE

lists all possible combinations of the variable values for an n-way table when n > 1 even if a combination does not occur in the data. SPARSE has no effect unless you use the LIST or OUT= option. When you use SPARSE and LIST, PROC FREQ lists any combination of values with a frequency count of zero. When you use SPARSE and OUT=, PROC FREQ includes empty crosstabulation table cells in the output data set.

See also: “Missing Values” on page 566

Featured in: Example 1 on page 571

TESTF=(values)

specifies the null hypothesis frequencies for a one-way chi-square test for specified frequencies. You can separate values with blanks or commas.

Range: The sum of the frequency values must equal the total frequency for the one-way table.

Restriction: The number of TESTF= values must equal the number of variable levels in the one-way table. List these values in the order that the corresponding variable levels appear in the output.

Interaction: If you omit CHISQ, TESTF= invokes CHISQ.

Main discussion: “Chi-Square Test for One-Way Tables” on page 528

TESTP=(values)

specifies the null hypothesis proportions for a one-way chi-square test for specified proportions. You can separate values with blanks or commas.

Range: Specify values in probability form as numbers between 0 and 1, where the proportions sum to 1. Or, specify values in percentage form as numbers between 0 and 100, where the percentages sum to 100.

Restriction: The number of TESTP= values must equal the number of variable levels in the one-way table. List these values in the order that the corresponding variable levels appear in the output.

Interaction: If you omit CHISQ, TESTP= invokes CHISQ.

Main discussion: “Chi-Square Test for One-Way Tables” on page 528

Featured in: Example 2 on page 574

TOTPCT

displays the percentage of total frequency on crosstabulation tables, for n-way tables where n > 2. This percentage is also available with the LIST option or as the PERCENT variable in the OUT= output data set.

TREND

performs the Cochran-Armitage test for trend.

Restriction: The table must be 2\times c or r \times 2.

Main discussion: “Cochran-Armitage Test for Trend” on page 547

Featured in: Example 7 on page 590

V5FMT

uses a field that is 8 positions wide to display the cell frequencies between 1.E7 and 1.E8 so that PROC FREQ does not use scientific notation to display frequencies in this range. By default, PROC FREQ uses a maximum of 7 positions to display cell
frequencies. In Version 5 of the SAS System, PROC FREQ used a maximum of 8 positions.

TEST Statement

Computes asymptotic tests for the specified measures of association and measures of agreement.

Requirement: TABLES statement

Main discussion: “Asymptotic Tests” on page 533

Featured in: Example 7 on page 590

TEST statistic-keyword(s);

Required Arguments

statistic-keyword(s)

specifies the statistics for which to provide asymptotic tests. The available statistics are the measures of association and agreement listed in Table 20.4 on page 522. You can use an individual keyword to request a test, or you can use a group keyword (MEASURES or AGREE) to request all available tests in that group.

For each measure of association or agreement that you specify, the TEST statement provides an asymptotic test that the measure equal zero. When you request an asymptotic test, PROC FREQ gives the asymptotic standard error under the null hypothesis, the test statistic, and the p-values. Additionally, PROC FREQ reports the confidence bounds for that measure. The ALPHA= option in the TABLES statement determines the confidence level, which by default equals .05 and provides 95 percent confidence bounds. In addition to these asymptotic tests, exact tests for selected measures of association and agreement are available with the EXACT statement. See “EXACT Statement” on page 506 for more information.

Table 20.4 TEST Statement Statistic-keywords and Required TABLES Statement Options

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Asymptotic tests computed</th>
<th>Required TABLES statement option</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGREE</td>
<td>simple kappa coefficient and weighted kappa coefficient</td>
<td>AGREE</td>
</tr>
<tr>
<td>GAMMA</td>
<td>gamma</td>
<td>ALL, MEASURES</td>
</tr>
<tr>
<td>KAPPA</td>
<td>simple kappa coefficient</td>
<td>AGREE</td>
</tr>
<tr>
<td>KENTB</td>
<td>Kendall’s tau-b</td>
<td>ALL, MEASURES</td>
</tr>
<tr>
<td>MEASURES</td>
<td>gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D (C</td>
<td>R), Somers’ D (R</td>
</tr>
</tbody>
</table>
WEIGHT Statement

Treats observations as if they appear multiple times in the input data set.

Tip: Use to input the cell counts of an existing table.

Featured in: Example 1 on page 571

WEIGHT variable;

Required Arguments

```
variable
```

specifies a numeric variable whose value represents the frequency of the observation. If you use the WEIGHT statement, PROC FREQ assumes that an observation represents n observations, where n is the value of variable. The value of the weight variable need not be integer but when a value is missing or zero, PROC FREQ ignores the corresponding observation. If a WEIGHT statement does not appear, each observation has a default weight of 1. The sum of the weight variable values represents the total number of observations.

Using Negative Weights

If any value of the weight variable is negative, PROC FREQ displays the frequencies (as measured by the weighted values), but does not compute and display percentages and other statistics. If you create an output data set using OUT= in the TABLES statement, PROC FREQ creates the PERCENT variable and assigns a missing value for each observation. PROC FREQ also assigns missing values to the variables that the OUTEXPECT and OUTPCT options create. You cannot create an output data set using the OUTPUT statement since statistics are not computed.
Inputting Frequency Counts

PROC FREQ can use either raw data or cell count data to produce frequency and
crosstabulation tables. Raw data, also known as case-record data, report the data as
one record for each subject or sample member. Cell count data report the data in	

Inputting Frequency Counts

Tabular form. A table lists all possible combinations of the data values along with the
frequency counts. This way of presenting data often appears in published results.

The following DATA step statements store raw data in a SAS data set:

```sas
data raw;
  input subject $ R C @@;
datalines;
  01 1 1 02 1 1 03 1 1 04 1 1 05 1 1
  06 1 2 07 1 2 08 1 2 09 2 1 10 2 1
  11 2 1 12 2 1 13 2 2 14 2 2 15 2 2
;
```

You can store the same data as cell counts using the following DATA step statements:

```sas
data counts;
  input R C CellCount @@;
datalines;
  1 1 5 1 2 3
  2 1 4 2 2 3
;
```

The variable R contains the values for the rows and the variable C contains the
values for the columns. The variable CellCount contains the cell count for each row and
column combination.

Both the RAW data set and COUNTS data set produce identical frequency counts,
two-way tables, and statistics. With the COUNTS data set, you must use a WEIGHT
statement to specify that CellCount contains cell counts. For example, to create a
two-way crosstabulation table submit the following statements:

```sas
proc freq data=counts;
  weight CellCount;
  tables R*C;
run;
```

Grouping with Formats

PROC FREQ groups a variable’s values according to its formatted values. If you
assign a format to a variable with a FORMAT statement, PROC FREQ formats the
variable values before dividing observations into the levels of a frequency or
crosstabulation table.

For example, suppose that a variable X has the values 1.1, 1.4, 1.7, 2.1, and 2.3.
Each of these values appears as a level on a frequency table. If you decide to round
each value to a single digit, include the statement

```sas
format x 1.1;
```
in the PROC FREQ step. Now the table lists the frequency count for formatted level 1 as two and formatted level 2 as three.

PROC FREQ treats formatted character variables in the same way. The formatted values are used to group the observations into the levels of a frequency table or crosstabulation table. PROC FREQ uses the entire value of a character format to classify an observation.

You can also use the FORMAT statement to assign formats that were created with PROC FORMAT to the variables. User-written formats determine the number of levels for a variable and provide labels for a table. If you use the same data with different formats, then you can produce frequency counts and statistics for different classifications of the variable values.

When you use PROC FORMAT to create a user-written format that combines missing and nonmissing values into one category, PROC FREQ treats the entire category of formatted values as missing. For example, a questionnaire codes answers as follows: 1 as yes, 2 as no, and 8 as no answer. The following PROC FORMAT step creates a user-written format:

```sas
proc format;
  value questfmt 1='Yes'
                 2='No'
                 .,8='Missing';
run;
```

When you use a FORMAT statement to assign QUESTFMT to a variable, the variable's frequency table no longer includes a frequency count for the response of 8. You must use MISSING or MISSPRINT in the TABLES statement to list the frequency for no answer. The frequency count for this level will include observations with either a value of 8 or a missing value (.).

The frequency or crosstabulation table lists the values of both character and numeric variables in ascending order based on internal (unformatted) variable values unless you change the order with the ORDER= option. To list the values in ascending order by formatted values, use ORDER=FORMATTED in the PROC FREQ statement.

For more information on the FORMAT statement, see SAS Language Reference: Dictionary.

Computational Resources

For each variable in a table request, PROC FREQ stores all of the levels in memory. If all variables are numeric and not formatted, this requires about 84 bytes for each variable level. When there are character variables or formatted numeric variables, the memory that is required depends on the formatted variable lengths, with longer formatted lengths requiring more memory. The number of levels for each variable is limited only by the largest integer that your operating environment can store.

For any single crosstabulation table requested, PROC FREQ builds the entire table in memory, regardless of whether the table has zero cell counts. Thus, if the numeric variables A, B, and C each have 10 levels, PROC FREQ requires 2520 bytes to store the variable levels for the table request A*B*C, as follows:

\[
3 \text{ variables} \times 10 \text{ levels/variable} \times 84 \text{ bytes/level} = 2520 \text{ bytes}
\]

In addition, PROC FREQ requires 8000 bytes to store the table cell frequencies

\[
1000 \text{ cells} \times 8 \text{ bytes/cell} = 8000 \text{ bytes}
\]

even though there may be only 10 observations.
When the variables have many levels or when there are many multiway tables, your computer may not have enough memory to construct the tables. If PROC FREQ runs out of memory while constructing tables, it stops collecting levels for the variable with the most levels and returns the memory that is used by that variable. The procedure then builds the tables that do not contain the disabled variables.

If there is not enough memory for your table request and if increasing the available memory is impractical, you can reduce the number of multiway tables or variable levels. If you are not using CMH or AGREE in the TABLES statement to compute statistics across strata, reduce the number of multiway tables by using PROC SORT to sort the data set by one or more of the variables or use the DATA step to create an index for the variables. Then remove the sorted or indexed variables from the TABLES statement and include a BY statement that uses these variables. You can also reduce memory requirements by using a FORMAT statement in the PROC FREQ step to reduce the number of levels. Additionally, reducing the formatted variable lengths reduces the amount of memory that is needed to store the variable levels. For more information on using formats, see “Grouping with Formats” on page 524.

Statistical Computations

This section gives the formulas PROC FREQ uses to compute the following:

- chi-square tests and statistics (CHISQ option)
- measures of association (MEASURES option)
- binomial proportion (BINOMIAL option)
- risks (or binomial proportions) and risk differences for 2×2 tables (RISKDIFF option)
- odds ratios and relative risks for 2×2 tables (MEASURES or RELRISK option)
- Jonckheere-Terpstra test (JT option)
- Cochran-Armitage test for trend (TREND option)
- tests and measures of agreement (AGREE option)
- Cochran-Mantel-Haenszel statistics (CMH option)

Furthermore, this section describes the computation of exact p-values.

When selecting statistics to analyze your data, consider the study design (which indicates whether the row and column variables are dependent or independent), the measurement scale of the variables (nominal, ordinal, or interval), the type of association that the statistics detect, and the assumptions for valid interpretation of the statistics. For example, the Mantel-Haenszel chi-square statistic requires an ordinal scale for both variables and detects a linear association. On the other hand, the Pearson chi-square is appropriate for all variables and can detect any kind of association, but is less powerful for detecting a linear association. Select tests and measures carefully, choosing those that are appropriate for your data. For more information on when to use a statistic and how to interpret the results, refer to Agresti (1996) and Stokes et al. (1995).

Definitions and Notation

In this chapter, a two-way table represents the crosstabulation of two variables X and Y. Let the rows of the table be labeled by the values X_i, $i = 1, 2, \ldots, R$, and the
columns by \(Y_j, j = 1, 2, \ldots, C\). Let \(n_{ij}\) denote the cell frequency in the \(i\)th row and the \(j\)th column and define the following:

\[
\begin{align*}
 n_i &= \sum n_{ij} \quad \text{(row totals)} \\
 n_j &= \sum n_{ij} \quad \text{(column totals)} \\
 n &= \sum_i \sum_j n_{ij} \quad \text{(overall total)} \\
 p_{ij} &= \frac{n_{ij}}{n} \quad \text{(cell percentages)} \\
 p_i &= \frac{n_i}{n} \quad \text{(row percentages)} \\
 p_j &= \frac{n_j}{n} \quad \text{(column percentages)} \\
 R_i &= \text{score for row } i \\
 C_j &= \text{score for column } j \\
 \overline{R} &= \frac{\sum_i n_i R_i}{n} \quad \text{(average row score)} \\
 \overline{C} &= \frac{\sum_j n_j C_j}{n} \quad \text{(average column score)} \\
 A_{ij} &= \sum_{k=1}^i \sum_{l=j}^i n_{kl} + \sum_{k=j}^i \sum_{l=1}^i n_{kl} \\
 D_{ij} &= \sum_{k=2}^i \sum_{l=j+1}^i n_{kl} + \sum_{k=j}^{i-1} \sum_{l=2}^{i-1} n_{kl} \\
 P &= \sum_i \sum_{j < i} n_{ij} A_{ij} \quad \text{(twice the number of concordances)} \\
 Q &= \sum_i \sum_{j > i} n_{ij} D_{ij} \quad \text{(twice the number of discordances)}
\end{align*}
\]

Scores

PROC FREQ uses row and column scores when computing the Mantel-Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted kappa coefficient, and Cochran-Mantel-Haenszel statistics. The SCORES= option in the TABLES statement specifies the score type that PROC FREQ uses. The available score types are TABLE, RANK, RIDIT, and MODRIDIT scores. The default score type is TABLE.

For numeric variables, TABLE scores are the values of the row and column levels. If the row or column variables are formatted, then the TABLE score is the internal numeric value corresponding to that level. If two or more numeric values are classified into the same formatted level, then the internal numeric value for that level is the smallest of these values. For character variables, TABLE scores are defined as the row numbers and column numbers (that is, 1 for the first row, 2 for the second row, and so on).

RANK scores, which you can use to obtain nonparametric analyses, are defined by

Row scores:

\[
R_{1i} = \sum_{k < i} n_{k.} + (n_i. + 1) / 2 \quad i = 1, 2, \ldots, R
\]

Column scores:

\[
C_{1j} = \sum_{l < j} n_{.l} + (n_{.j} + 1) / 2 \quad j = 1, 2, \ldots, C
\]
Note that RANK scores yield midranks for tied values. RIDIT scores (Bross 1958; Mack and Skillings 1980) also yield nonparametric analyses, but they are standardized by the sample size. RIDIT scores are derived from RANK scores as

\[
R_{2i} = \frac{R_{1i}}{n} \\
C_{2j} = \frac{C_{1j}}{n}
\]

Modified ridit (MODRIDIT) scores (van Elteren 1960 and Lehmann 1975), which also yield nonparametric analyses, represent the expected values of the order statistics for the uniform distribution on (0,1). Modified ridit scores are derived from RANK scores as

\[
R_{3i} = \frac{R_{1i}}{(n + 1)} \\
C_{3j} = \frac{C_{1j}}{(n + 1)}
\]

Chi-Square Tests and Measures

When you specify the CHISQ option in the TABLES statement, PROC FREQ performs the following chi-square tests for each two-way table: Pearson chi-square, continuity-adjusted chi-square for \(2 \times 2\) tables, likelihood-ratio chi-square, Mantel-Haenszel chi-square, and Fisher’s exact test for \(2 \times 2\) tables. Also, PROC FREQ computes the following statistics derived from the Pearson chi-square: the phi coefficient, the contingency coefficient, and Cramer’s \(V\). PROC FREQ computes Fisher’s exact test for general \(R \times C\) tables when you specify the FISHER option in the TABLES statement, or, equivalently, when you specify the FISHER option in the EXACT statement.

For one-way frequency tables, PROC FREQ performs a chi-square goodness-of-fit test when you specify the CHISQ option. See “Chi-Square Test for One-Way Tables” on page 528 for information. The other chi-square tests and statistics described in this section are defined only for two-way tables, and so are not computed for one-way frequency tables.

All the two-way test statistics described in this section test the null hypothesis of no association between the row variable and the column variable. When the sample size \(n\) is large, these test statistics are distributed approximately as chi-square when the null hypothesis is true. When the sample size is not large, exact tests may be useful. PROC FREQ computes exact tests for the following chi-square statistics when you specify the corresponding option in the EXACT statement: Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square. See “Exact Statistics” on page 563 for more information.

Note that the Mantel-Haenszel chi-square statistic is appropriate only when both variables lie on an ordinal scale. The other chi-square tests and statistics in this section are appropriate for either nominal or ordinal variables. The following sections give the formulas that PROC FREQ uses to compute the chi-square tests and statistics. For further information on the formulas and on the applicability of each statistic, refer to Agresti (1996), Stokes et al. (1995), and the other references cited for each statistic.

Chi-Square Test for One-Way Tables

For one-way frequency tables, the CHISQ option in the TABLES statement computes a chi-square goodness-of-fit test. Let \(C\) denote the number of classes, or levels, in the
one-way table. Let \(f_i \) denote the frequency of class \(i \) (or the number of observations in class \(i \)), for \(i = 1, 2, \ldots, C \). Then PROC FREQ computes the chi-square statistic as

\[
Q_P = \sum_{i=1}^{C} \frac{(f_i - e_i)^2}{e_i}
\]

where \(e_i \) is the expected frequency for class \(i \) under the null hypothesis.

In the test for equal proportions, which is the default for the CHISQ option, the null hypothesis specifies equal proportions of the total sample size for each class. Under this null hypothesis, the expected frequency for each class equals the total sample size divided by the number of classes,

\[
e_i = \frac{n}{C} \quad \text{for} \quad i = 1, 2, \ldots, C
\]

In the test for specified frequencies, which PROC FREQ computes when you input null hypothesis frequencies using the TESTF= option, the expected frequencies are those TESTF= values. In the test for specified proportions, which PROC FREQ computes when you input null hypothesis proportions using the TESTP= option, the expected frequencies are determined from the TESTP= proportions \(p_i \), as

\[
e_i = p_i \cdot n \quad \text{for} \quad i = 1, 2, \ldots, C
\]

Under the null hypothesis (of equal proportions, specified frequencies, or specified proportions), this test statistic has an asymptotic chi-square distribution, with \(C - 1 \) degrees of freedom. In addition to the asymptotic test, PROC FREQ computes the exact one-way chi-square test when you specify the CHISQ option in the EXACT statement.

Chi-Square Test for Two-Way Tables

The Pearson chi-square statistic for two-way tables involves the differences between the observed and expected frequencies, where the expected frequencies are computed under the null hypothesis of independence. The chi-square statistic is computed as

\[
Q_P = \sum_{i} \sum_{j} \frac{(n_{ij} - e_{ij})^2}{e_{ij}}
\]

where

\[
e_{ij} = \frac{n_{i} \cdot n_{.j}}{n}
\]

When the row and column variables are independent, \(Q_P \) has an asymptotic chi-square distribution with \((R-1)(C-1)\) degrees of freedom. For large values of \(Q_P \), this test rejects the null hypothesis in favor of the alternative hypothesis of general association. In addition to the asymptotic test, PROC FREQ computes the exact
chi-square test when you specify the PCHI option or CHISQ option in the EXACT statement.

For a 2×2 table, the Pearson chi-square is also appropriate for testing the equality of two binomial proportions or, for $R \times 2$ and $2 \times C$ tables, the homogeneity of proportions. Refer to Fienberg (1980).

Likelihood-Ratio Chi-Square Test

The likelihood-ratio chi-square statistic involves the ratios between the observed and expected frequencies. The statistic is computed as

$$G^2 = 2 \sum_i \sum_j n_{ij} \ln \left(\frac{n_{ij}}{e_{ij}} \right)$$

When the row and column variables are independent, G^2 has an asymptotic chi-square distribution with $(R - 1)(C - 1)$ degrees of freedom. In addition to the asymptotic test, PROC FREQ computes the exact test when you specify the LRCHI option or the CHISQ option in the EXACT statement.

Continuity-Adjusted Chi-Square Test

The continuity-adjusted chi-square statistic for 2×2 tables is similar to the Pearson chi-square, except that it is adjusted for the continuity of the chi-square distribution. The continuity-adjusted chi-square is most useful for small sample sizes. The use of the continuity adjustment is controversial; this chi-square test is more conservative, and more like Fisher’s exact test, when your sample size is small. As the sample size increases, the statistic becomes more and more like the Pearson chi-square. The statistic is computed as

$$Q_C = \sum_i \sum_j \left[\max(0, |n_{ij} - e_{ij}| - 0.5) \right]^2$$

Under the null hypothesis of independence, Q_C has an asymptotic chi-square distribution with $(R - 1)(C - 1)$ degrees of freedom.

Mantel-Haenszel Chi-Square Test

The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is a linear association between the row variable and the column variable. Both variables must lie on an ordinal scale. The statistic is computed as

$$Q_{MH} = (n - 1)r^2$$

where r^2 is the Pearson correlation between the row variable and the column variable. For a description of the Pearson correlation, see “Pearson Correlation Coefficient” on page 537. The Pearson correlation, and thus the Mantel-Haenszel chi-square statistic, use the scores you specify in the SCORES= option in the TABLES statement.

Under the null hypothesis of no association, Q_{MH} has an asymptotic chi-square distribution with 1 degree of freedom. In addition to the asymptotic test, PROC FREQ
computes the exact test when you specify the MHCHI option or the CHISQ option in the EXACT statement.

Refer to Mantel and Haenszel (1959) and Landis et al. (1978).

Fisher’s Exact Test

For 2×2 tables, Fisher’s exact test is the probability of observing a table that gives at least as much evidence of association as the one actually observed, given that the null hypothesis is true. The row and column margins are assumed to be fixed. The hypergeometric probability, p, of every possible table is computed, and the p-value is defined as

$$PROB = \sum_{A} p$$

For a two-sided alternative hypothesis, A is the set of tables with p less than or equal to the probability of the observed table. A small two-sided p-value supports the alternative hypothesis of association between the row and column variables.

One-sided tests are defined in terms of the frequency of the cell in the first row and first column (the $(1,1)$ cell). For a left-sided alternative hypothesis, A is the set of tables where the frequency in the $(1,1)$ cell is less than or equal to that of the observed table. A small left-sided p-value supports the alternative hypothesis that the probability of an observation being in the first cell is less than that expected under the null hypothesis of independent row and column variables.

Similarly, for a right-sided alternative hypothesis, A is the set of tables where the frequency in the $(1,1)$ cell is greater than or equal to that of the observed table. A small right-sided p-value supports the alternative that the probability of the first cell is greater than that expected under the null hypothesis.

Because the $(1,1)$ cell frequency completely determines the 2×2 table when the marginal row and column sums are fixed, these one-sided alternatives can be equivalently stated in terms of other cell probabilities or ratios of cell probabilities. The left-sided alternative is equivalent to an odds ratio less than 1, and the right-sided alternative is equivalent to an odds ratio greater than 1, where the odds ratio equals $(n_{11}n_{22} / n_{12}n_{21})$. Additionally, the left-sided alternative is equivalent to the column 1 risk for row 1 being less than the column 1 risk for row 2, $p_{1|1} < p_{1|2}$. Similarly, the right-sided alternative is equivalent to the column 1 risk for row 1 being greater than the column 1 risk for row 2, $p_{1|1} > p_{1|2}$. Refer to Agresti (1996).

Fisher’s exact test was extended to general $R \times C$ tables by Freeman and Halton (1951), and this test is also known as the Freeman-Halton test. For $R \times C$ tables, the two-sided p-value is defined the same as it is for 2×2 tables. A is the set of all tables with p less than or equal to the probability of the observed table. A small p-value supports the alternative hypothesis of association between the row and column variables. For $R \times C$ tables, Fisher’s exact test is inherently two-sided. The alternative hypothesis is defined only in terms of general, and not linear, association. Therefore, PROC FREQ does not compute right-sided or left-sided p-values for general $R \times C$ tables.

For $R \times C$ tables, PROC FREQ computes Fisher’s exact test using the network algorithm of Mehta and Patel (1983), which provides a faster and more efficient solution than direct enumeration. See “Exact Statistics” on page 563 for more information.
Phi Coefficient

The phi coefficient is a measure of association derived from the Pearson chi-square statistic. It has the range $-1 \leq \phi \leq 1$ for 2×2 tables. Otherwise, the range is $0 \leq \phi \leq \min \left(\sqrt{R - 1}, \sqrt{C - 1} \right)$ (Liebetrau, 1983). The phi coefficient is computed as

$$\phi = \frac{n_{11}n_{22} - n_{12}n_{21}}{\sqrt{n_{11}n_{22}n_{12}n_{21}}} \quad \text{for } 2 \times 2 \text{ tables}$$

$$\phi = \sqrt{Q_p/n} \quad \text{otherwise.}$$

Refer to Fleiss (1981, pp 59-60).

Contingency Coefficient

The contingency coefficient is a measure of association derived from the Pearson chi-square. It has the range $0 \leq P \leq \sqrt{(m-1)/m}$, where $m = \min(R, C)$ (Liebetrau, 1983). The contingency coefficient is computed as

$$P = \sqrt{\frac{Q_p}{Q_p + n}}$$

Refer to Kendall and Stuart (1979, pp 587-588).

Cramer’s V

Cramer’s V is a measure of association derived from the Pearson chi-square. It is designed so that the attainable upper bound is always 1. It has the range $-1 \leq V \leq 1$ for 2×2 tables; otherwise, the range is $0 \leq V \leq 1$. Cramer’s V is computed as

$$V = \phi \quad \text{for } 2 \times 2 \text{ tables}$$

$$V = \sqrt{\frac{Q_p/n}{\min(R-1, C-1)}} \quad \text{otherwise.}$$

Refer to Kendall and Stuart (1979, p. 588).

Measures of Association

When you specify the MEASURES option in the TABLES statement, PROC FREQ computes several statistics that describe the association between the two variables of the contingency table. The following are measures of ordinal association that consider whether the variable Y tends to increase as X increases: gamma, Kendall’s tau-b, Stuart’s tau-c, and Somers’ D. These measures are appropriate for ordinal variables, and classify pairs of observations as concordant or discordant. A pair is concordant if the observation with the larger value of X also has the larger value of Y. A pair is discordant if the observation with the larger value of X has the smaller value of Y. Refer to Agresti (1996) and the other references cited in the discussion of each measure of association.
The Pearson correlation coefficient and the Spearman rank correlation coefficient are also appropriate for ordinal variables. The Pearson correlation describes the strength of the linear association between the row and column variables, and is computed using the row and column scores specified by the SCORES= option in the TABLES statement. The Spearman correlation is computed with rank scores. The polychoric correlation (requested by the PLCORR option) also requires ordinal variables, and assumes that the variables have an underlying bivariate normal distribution. The following measures of association do not require ordinal variables, but are appropriate for nominal variables: lambda asymmetric and symmetric, and the uncertainty coefficients.

PROC FREQ computes estimates of the measures according to the formulas given in the discussion of each measure of association. For each measure, PROC FREQ computes an asymptotic standard error, which is the square root of the asymptotic variance denoted by \(\text{var} \) in the following sections.

Confidence Bounds

If you specify the CL option in the TABLES statement, PROC FREQ computes asymptotic confidence bounds for all MEASURES statistics. The confidence coefficient is determined according to the value of the ALPHA= option, which by default equals 0.05 and produces 95 percent confidence bounds. The confidence bounds are computed as

\[
e^\text{st} \pm z_{\alpha/2} \cdot ASE
\]

where \(e^\text{st} \) is the estimate of the measure, \(z_{\alpha/2} \) is the 100 \((1 - \alpha/2)\) percentile of the standard normal distribution, and ASE is the asymptotic standard error of the estimate.

Asymptotic Tests

For each measure that you specify in the TEST statement, PROC FREQ computes an asymptotic test of the null hypothesis that the measure equals zero. Asymptotic tests are available for the following measures of association: gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D(\(R|C\)), Somers’ D(\(C|R\)), the Pearson correlation coefficient, and the Spearman rank correlation coefficient. To compute an asymptotic test, PROC FREQ uses a standardized test statistic \(z \), which has an asymptotic standard normal distribution under the null hypothesis. The standardized test statistic is computed as

\[
z = \frac{e^\text{st}}{\sqrt{\text{var}_0(e^\text{st})}}
\]

where \(e^\text{st} \) is the estimate of the measure, and \(\text{var}_0(e^\text{st}) \) is the variance of the estimate under the null hypothesis. Formulas for \(\text{var}_0(e^\text{st}) \) are given in the discussion of each measure of association.

Note that the ratio of \(e^\text{st} \) to \(\sqrt{\text{var}_0(e^\text{st})} \) is the same for the following measures: gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D(\(R|C\)), and Somers’ D(\(C|R\)). Therefore, the tests for these measures are identical. For example, the \(p \)-values for the test of \(H_0: \gamma = 0 \) equal the \(p \)-values for the test of \(H_0: \text{tau-b} = 0 \).

PROC FREQ computes one-sided and two-sided \(p \)-values for each of these tests. When the test statistic \(z \) is greater than its null hypothesis expected value of zero, PROC FREQ computes the right-sided \(p \)-value, which is the probability of a larger value of the statistic occurring under the null hypothesis. A small right-sided \(p \)-value supports the alternative hypothesis that the true value of the measure is greater than
When the test statistic is less than or equal to zero, PROC FREQ computes the left-sided p-value, which is the probability of a smaller value of the statistic occurring under the null hypothesis. A small left-sided p-value supports the alternative hypothesis that the true value of the measure is less than zero. The one-sided p-value P_1 can be expressed as

$$
P_1 = \text{Prob} (Z > z) \quad \text{if} \quad z > 0
$$

$$
P_1 = \text{Prob} (Z < z) \quad \text{if} \quad z \leq 0
$$

where Z has a standard normal distribution. The two-sided p-value P_2 is computed as

$$
P_2 = \text{Prob} (|Z| > |z|)
$$

Exact Tests

Exact tests are available for two measures of association, the Pearson correlation coefficient and the Spearman rank correlation coefficient. If you specify the PCORR option in the EXACT statement, PROC FREQ computes the exact test of the hypothesis that the Pearson correlation equals zero. If you specify the SCORR option in the EXACT statement, PROC FREQ computes the exact test of the hypothesis that the Spearman correlation equals zero. See “Exact Statistics” on page 563 for information on exact tests.

Gamma

The estimator of gamma is based only on the number of concordant and discordant pairs of observations. It ignores tied pairs (that is, pairs of observations that have equal values of X or equal values of Y). Gamma is appropriate only when both variables lie on an ordinal scale. It has the range $-1 \leq \Gamma \leq 1$. If the two variables are independent, then the estimator of gamma tends to be close to zero. Gamma is estimated by

$$
G = \frac{(P - Q)}{(P + Q)}
$$

with

$$
\text{var} = \frac{16}{(P + Q)^4} \sum_i \sum_j n_{ij} (QA_{ij} - PD_{ij})^2
$$

The variance of the estimator under the null hypothesis that gamma equals zero is computed as

$$
\text{var}_0 (G) = \frac{4}{(P + Q)^2} \left(\sum_i \sum_j n_{ij} (A_{ij} - D_{ij})^2 - (P - Q)^2 / n \right)
$$
For 2×2 tables, gamma is equivalent to Yule’s Q. Refer to Goodman and Kruskal (1963; 1972), Brown and Benedetti (1977), and Agresti (1990).

Kendall’s Tau-b

Kendall’s tau-b is similar to gamma except that tau-b uses a correction for ties. Tau-b is appropriate only when both variables lie on an ordinal scale. Tau-b has the range $-1 \leq \tau_b \leq 1$. It is estimated by

$$t_b = \frac{(P - Q)}{\sqrt{w_r w_c}}$$

with

$$var = \frac{1}{w^4} \left(\sum_i \sum_j n_{ij} (2w d_{ij} + t_b v_{ij})^2 - n^3 t_b^2 (w_r + w_c)^2 \right)$$

where

$$w = \sqrt{w_r w_c}$$

$$w_r = n^2 - \sum_i n_i^2$$

$$w_c = n^2 - \sum_j n_j^2$$

$$d_{ij} = A_{ij} - D_{ij}$$

$$v_{ij} = n_i w_c + n_j w_r$$

The variance of the estimator under the null hypothesis that tau-b equals zero is computed as

$$var_0 (t_b) = \frac{4}{w_r w_c} \left(\sum_i \sum_j n_{ij} (A_{ij} - D_{ij})^2 - (P - Q)^2 / n \right)$$

Refer to Kendall (1955) and Brown and Benedetti (1977).

Stuart’s Tau-c

Stuart’s tau-c makes an adjustment for table size in addition to a correction for ties. Tau-c is appropriate only when both variables lie on an ordinal scale. Tau-c has the range $-1 \leq \tau_c \leq 1$. It is estimated by

$$t_c = \frac{m (P - Q)}{n^2 (m - 1)}$$
with

\[
\text{var} = \frac{4m^2}{(m-1)^2 n^4} \left(\sum_i \sum_j n_{ij} d_{ij}^2 - (P - Q)^2 \right)
\]

where

\[
m = \min(R, C) \\
d_{ij} = A_{ij} - D_{ij}
\]

The variance of the estimator under the null hypothesis that \(\tau_c \) equals zero is the same as \(\text{var} \) in the above equation.

\[
\text{var}_0(\tau_c) = \text{var}
\]

Refer to Brown and Benedetti (1977).

Somers’ \(D \)

Somers’ \(D(C|R) \) and Somers’ \(D(R|C) \) are asymmetric modifications of \(\tau_b \). \(C|R \) denotes that the row variable \(X \) is regarded as an independent variable, while the column variable \(Y \) is regarded as dependent. Similarly, \(R|C \) denotes that the column variable \(Y \) is regarded as an independent variable, while the row variable \(X \) is regarded as dependent. Somers’ \(D \) differs from \(\tau_b \) in that it uses a correction only for pairs that are tied on the independent variable. Somers’ \(D \) is appropriate only when both variables lie on an ordinal scale. It has the range \(-1 \leq D \leq 1\). Formulas for Somers’ \(D(R|C) \) are obtained by interchanging the indices:

\[
D(C|R) = \frac{(P - Q)}{w_r}
\]

with

\[
\text{var} = \frac{4}{w_r^4} \sum_i \sum_j n_{ij} (w_r d_{ij} - (P - Q) (n - n_{ij}))^2
\]

where

\[
w_r = n^2 - \sum_i n_i^2 \\
d_{ij} = A_{ij} - D_{ij}
\]

The variance of the estimator under the null hypothesis that \(\tau_c \) equals zero is computed as
Referto Somers (1962) and Goodman and Kruskal (1972).

Pearson Correlation Coefficient

PROC FREQ computes the Pearson correlation coefficient using the scores specified in the SCORES= option. The Pearson correlation is appropriate only when both variables lie on an ordinal scale. It has the range $-1 \leq \rho \leq 1$. The Pearson correlation coefficient is computed as

$$ r = \frac{v}{w} = \frac{ss_{rc}}{\sqrt{ss_r ss_c}} $$

with

$$ var = \frac{1}{w^4} \sum_i \sum_j n_{ij} \left(w (R_i - \bar{R}) (C_j - \bar{C}) - \frac{b_{ij}v}{2w} \right)^2 $$

The row scores R_i and the column scores C_j are determined by the SCORES= option in the TABLES statement and by

$$ ss_r = \sum_i \sum_j n_{ij} (R_i - \bar{R})^2 $$$$ ss_c = \sum_i \sum_j n_{ij} (C_j - \bar{C})^2 $$$$ ss_{rc} = \sum_i \sum_j n_{ij} (R_i - \bar{R}) (C_j - \bar{C}) $$
$$ b_{ij} = (R_i - \bar{R})^2 ss_c + (C_j - \bar{C})^2 ss_r $$$$ v = ss_{rc} $$
$$ w = \sqrt{ss_r ss_c} $$

To compute an asymptotic test for the Pearson correlation, PROC FREQ uses a standardized test statistic r^*, which has an asymptotic standard normal distribution under the null hypothesis. The standardized test statistic is computed as

$$ r^* = \frac{r}{\sqrt{\text{var}_0 (r)}} $$

where $\text{var}_0 (r)$ is the variance of the correlation under the null hypothesis.
This asymptotic variance is derived for multinomial sampling in a contingency table framework, and it differs from the form obtained under the assumption that both variables are continuous and normally distributed. Refer to Brown and Benedetti (1977).

PROC FREQ also computes the exact test for the hypothesis that the Pearson correlation equals zero when you specify the PCORR option in the EXACT statement. See “Exact Statistics” on page 563 for more information on exact tests.

Spearman Rank Correlation Coefficient

The Spearman correlation coefficient is computed using rank scores R_i and C_j, defined in “Scores” on page 527. It is appropriate only when both variables lie on an ordinal scale. It has the range $-1 \leq \rho_s \leq 1$. The Spearman correlation coefficient is computed as

$$r_s = \frac{v}{w}$$

with

$$var = \frac{1}{n^2 w^4} \sum_i \sum_j n_{ij} (z_{ij} - \bar{z})^2$$

where

$$var_0 (r) = \frac{\sum_i \sum_j n_{ij} (R_i - \bar{R})^2 (C_j - \bar{C})^2 - ss_r^2 r / n}{ss_r ss_c}$$
\[v = \sum_i \sum_j n_{ij} R(i) C(j) \]
\[w = \frac{1}{12} \sqrt{FG} \]
\[F = n^3 - \sum_i n_i^3 \]
\[G = n^3 - \sum_j n_j^3 \]
\[R(i) = R_{1i} - \frac{n}{2} \]
\[C(j) = C_{1j} - \frac{n}{2} \]
\[\bar{z} = \frac{1}{n} \sum_i \sum_j n_{ij} z_{ij} \]
\[z_{ij} = wv_{ij} - w\bar{v}_{ij} \]
\[v_{ij} = n(R(i)C(j) + \frac{1}{2} \sum_l n_{il} C(l) + \frac{1}{2} \sum_k n_{kj} R(k) + \sum_{l \neq i, k \neq j} n_{kl} C(l) + \sum_{k \neq j} n_{kj} R(k)) \]
\[w_{ij} = \frac{-n}{96w} (F n_{ij}^2 + G n_{ij}^2) \]

Refer to Snedecor and Cochran (1989) and Brown and Benedetti (1977).

To compute an asymptotic test for the Spearman correlation, PROC FREQ uses a standardized test statistic \(r_s^* \), which has an asymptotic standard normal distribution under the null hypothesis. The standardized test statistic is computed as

\[r_s^* = \frac{r_s}{\sqrt{\text{var}_0(r_s)}} \]

where \(\text{var}_0(r_s) \) is the variance of the correlation under the null hypothesis.

\[\text{var}_0(r_s) = \frac{1}{n^2w^2} \sum_i \sum_j n_{ij} (v_{ij} - \bar{v})^2 \]

where

\[\bar{v} = \sum_i \sum_j n_{ij} v_{ij} / n \]

This asymptotic variance is derived for multinomial sampling in a contingency table framework, and it differs from the form obtained under the assumption that both variables are continuous. Refer to Brown and Benedetti (1977).
PROC FREQ also computes the exact test for the hypothesis that the Spearman rank correlation equals zero when you specify the SCORR option in the EXACT statement. See “Exact Statistics” on page 563 for more information.

Polychoric Correlation

When you specify the PLCORR option in the TABLES statement, PROC FREQ computes the polychoric correlation. This measure of association is based on the assumption that the ordered, categorical variables of the frequency table have an underlying bivariate normal distribution. For 2×2 tables, the polychoric correlation is also known as the tetrachoric correlation. Refer to Drasgow (1986) for an overview of polychoric correlation. The polychoric correlation coefficient is the maximum likelihood estimate of the product-moment correlation between the normal variables, estimating thresholds from the observed table frequencies. Olsson (1979) gives the likelihood equations and an asymptotic covariance matrix for the estimates.

To estimate the polychoric correlation, PROC FREQ iteratively solves the likelihood equations by a Newton-Raphson algorithm. Iteration stops when the convergence measure falls below the convergence criterion, or when the maximum number of iterations is reached, whichever occurs first. The CONVERGE= option sets the convergence criterion, and the default is 0.0001. The MAXITER= option sets the maximum number of iterations, and the default is 20.

Lambda Asymmetric

Asymmetric lambda, $\lambda (C|R)$, is interpreted as the probable improvement in predicting the column variable Y given knowledge of the row variable X. Asymmetric lambda has the range $0 \leq \lambda (C|R) \leq 1$. It is computed as

$$\lambda (C|R) = \frac{\sum r_i - r}{n - r}$$

with

$$\text{var} = \frac{(n - \sum r_i)}{(n - r)^3} \left(\sum r_i + r - 2 \sum (r_i|l_i = l) \right)$$

where

$$r_i = \max_j (n_{ij})$$

$$r = \max_j (n_{.j})$$

Also, let l_i be the unique value of j such that $r_i = n_{ij}$, and let l be the unique value of j such that $r_i = n_{.j}$.

Because of the uniqueness assumptions, ties in the frequencies or in the marginal totals must be broken in an arbitrary but consistent manner. In case of ties, l is defined here as the smallest value of j such that $r = n_{.j}$. For a given i, if there is at least one value j such that $n_{ij} = r_i = c_j$ then l_i is defined here to be the smallest such value of j.

Otherwise, if \(n_{ij} = r_i \), then \(l_i \) is defined to be equal to \(l \). If neither condition is true, then \(l_i \) is taken to be the smallest value of \(j \) such that \(n_{ij} = r_i \). The formulas for lambda asymmetric \(R|C \) can be obtained by interchanging the indices.

Refer to Goodman and Kruskal (1963).

Lambda Symmetric

The nondirectional lambda is the average of the two asymmetric lambdas. Lambda symmetric has the range \(0 \leq \lambda \leq 1 \). Lambda symmetric is defined as

\[
\lambda = \frac{\left(\sum_i r_i + \sum_j c_j - r - c \right)}{(2n - r - c)} = \frac{(w - v)}{w}
\]

with

\[
\text{var} = \frac{1}{w^4} (wvy - 2w^2 \left[n - \sum_i \sum_j (n_{ij} | j = l, i = k_j) \right] - 2v^2 (n - n_{kl}))
\]

where

\[
c_j = \max_i (n_{ij})
\]

\[
c = \max_i (n_i,)
\]

\[
w = 2n - r - c
\]

\[
v = 2n - \sum r_i - \sum c_j
\]

\[
x = \sum_i (r_i | l_i = l) + \sum_j (c_j | k_j = k) + r_k + c_l
\]

\[
y = 8n - w - v - 2x
\]

Refer to Goodman and Kruskal (1963).

Uncertainty Coefficient Asymmetric

The uncertainty coefficient, \(U (C|R) \), is the proportion of uncertainty (entropy) in the column variable \(Y \) that is explained by the row variable \(X \). It has the range \(0 \leq U (C|R) \leq 1 \). The formulas for \(U (R|C) \) are obtained by interchanging the indices.

\[
U (C|R) = \frac{H(X) + H(Y) - H(XY)}{H(Y)} = \frac{v}{w}
\]

with
\[
\text{var} = \frac{1}{n^2 w^4} \sum_i \sum_j n_{ij} \left\{ H(Y) \ln \left(\frac{n_{ij}}{n_i} \right) + [H(X) - H(XY)] \ln \left(\frac{n_{ij}}{n} \right) \right\}^2
\]

where

\[
v = H(X) + H(Y) - H(XY)
\]

\[
w = H(Y)
\]

\[
H(X) = -\sum_i \left(\frac{n_{i.}}{n} \right) \ln \left(\frac{n_{i.}}{n} \right)
\]

\[
H(Y) = -\sum_j \left(\frac{n_{.j}}{n} \right) \ln \left(\frac{n_{.j}}{n} \right)
\]

\[
H(XY) = -\sum_i \sum_j \left(\frac{n_{ij}}{n} \right) \ln \left(\frac{n_{ij}}{n} \right)
\]

Refer to Theil (1972, pp 115-120) and Goodman and Kruskal (1972).

Uncertainty Coefficient Symmetric

The uncertainty coefficient, \(U \), is the symmetric version of the two asymmetric coefficients. It has the range \(0 \leq U \leq 1 \). It is defined as

\[
U = \frac{2(H(X) + H(Y) - H(XY))}{H(X) + H(Y)}
\]

with

\[
\text{var} = 4 \sum_i \sum_j n_{ij} \left\{ H(Y) \ln \left(\frac{n_{i.} n_{.j}}{n^2} \right) - [H(X) + H(Y)] \ln \left(\frac{n_{i.}}{n} \right) \ln \left(\frac{n_{.j}}{n} \right) \right\}^2 \frac{n^2}{n^2 (H(X) + H(Y))^4}
\]

Refer to Goodman and Kruskal (1972).

Binomial Proportion

When you specify the BINOMIAL option in the TABLES statement, PROC FREQ computes a binomial proportion for one-way tables. This is the proportion of observations for the first variable level, or class, that appears in the output.

\[
\hat{p} = \frac{n_1}{n}
\]
where \(n_1 \) is the frequency for the first level, and \(n \) is the total frequency for the one-way table. The standard error for the binomial proportion is computed as

\[
se(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
\]

Using the normal approximation to the binomial distribution, PROC FREQ constructs asymptotic confidence bounds for \(p \) according to

\[
\hat{p} \pm z_{\alpha/2} \cdot se(\hat{p})
\]

where \(z_{\alpha/2} \) is the 100 \((1 - \alpha/2)\) percentile of the standard normal distribution. The confidence level \(\alpha \) is determined by the \texttt{ALPHA=} option, which by default equals .05 and produces 95 percent confidence bounds. Additionally, PROC FREQ computes exact confidence bounds for the binomial proportion using the \texttt{F} distribution method given in Collett (1991) and also described by Leemis and Trivedi (1996).

PROC FREQ computes an asymptotic test of the hypothesis that the binomial proportion equals \(p_0 \), where the value of \(p_0 \) is specified by the \texttt{P=} option in the \texttt{TABLES} statement. If you do not specify a value for \(P= \), PROC FREQ uses \(p_0 = 0.5 \) by default. The asymptotic test statistic is

\[
z = \frac{\hat{p} - p_0}{\sqrt{p_0 (1-p_0) / n}}
\]

PROC FREQ computes one-sided and two-sided \(p \)-values for this test. When the test statistic \(z \) is greater than its null hypothesis expected value of zero, PROC FREQ computes the right-sided \(p \)-value, which is the probability of a larger value of the statistic occurring under the null hypothesis. A small right-sided \(p \)-value supports the alternative hypothesis that the true value of the proportion is greater than \(p_0 \). When the test statistic is less than or equal to zero, PROC FREQ computes the left-sided \(p \)-value, which is the probability of a smaller value of the statistic occurring under the null hypothesis. A small left-sided \(p \)-value supports the alternative hypothesis that the true value of the proportion is less than \(p_0 \). The one-sided \(p \)-value \(P_1 \) can be expressed as

\[
P_1 = \text{Prob} \left(Z > z \right) \quad \text{if } z > 0
\]

\[
P_1 = \text{Prob} \left(Z < z \right) \quad \text{if } z \leq 0
\]

where \(Z \) has a standard normal distribution. The two-sided \(p \)-value \(P_2 \) is computed as

\[
P_2 = \text{Prob} \left(|Z| > |z| \right)
\]

When you specify the \texttt{BINOMIAL} option in the \texttt{EXACT} statement, PROC FREQ also computes an exact test of the null hypothesis \(H_0 : p = p_0 \). To compute this exact test, PROC FREQ uses the binomial probability function

\[
\text{Prob}(X=x|p_0) = \binom{n}{x} p_0^x (1-p_0)^{n-x} \quad x = 0,1,2,\ldots,n
\]
where the variable \(X \) has a binomial distribution with parameters \(n \) and \(p_0 \). To compute \(\text{Prob}(X \leq n_1) \), PROC FREQ sums these binomial probabilities over \(x \) from zero to \(n_1 \). To compute \(\text{Prob}(X \geq n_1) \), PROC FREQ sums these binomial probabilities over \(x \) from \(n_1 \) to \(n \). Then the exact one-sided p-value is

\[
P_1 = \min(\text{Prob}(X \leq n_1|p_0), \text{Prob}(X \geq n_1|p_0))
\]

and the exact two-sided p-value is

\[
P_2 = 2 \cdot P_1
\]

Risks and Risk Differences

The RISKDIFF option in the TABLES statement provides estimates of risks (or binomial proportions) and risk differences for \(2 \times 2 \) tables. This analysis may be appropriate when you are comparing the proportion of some characteristic for two groups, where row 1 and row 2 correspond to the two groups, and the columns correspond to two possible characteristics or outcomes. For example, the row variable might be a treatment or dose, and the column variable might be the response. Refer to Collett (1991), Fleiss (1981), and Stokes et al. (1995).

Let the frequencies of the \(2 \times 2 \) table be represented as follows:

<table>
<thead>
<tr>
<th></th>
<th>Column 1</th>
<th>Column 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(n_{11})</td>
<td>(n_{12})</td>
<td>(n_1).</td>
</tr>
<tr>
<td>Row 2</td>
<td>(n_{21})</td>
<td>(n_{22})</td>
<td>(n_2).</td>
</tr>
<tr>
<td>Total</td>
<td>(n_{11})</td>
<td>(n_{22})</td>
<td>(n).</td>
</tr>
</tbody>
</table>

The column 1 risk for row 1 is the proportion of row 1 observations classified in column 1

\[
p_{11} = \frac{n_{11}}{n_1}.
\]

This estimates the conditional probability of the column 1 response, given the first level of the row variable.

The column 1 risk for row 2 is the proportion of row 2 observations classified in column 1,

\[
p_{12} = \frac{n_{21}}{n_2}.
\]

and the overall column 1 risk is the proportion of all observations classified in column 1,

\[
p_1 = \frac{n_1}{n}
\]
The column 1 risk difference compares the risks for the two rows, and it is computed as the column 1 risk for row 1 minus the column 1 risk for row 2,

\[(pd_{1}) = p_{11} - p_{12}\]

The risks and risk difference are defined similarly for column 2.

The standard error of the column 1 risk estimate for row \(i\) is computed as

\[se(p_{1i}) = \sqrt{\frac{p_{1i}(1 - p_{1i})}{n_i}}\]

The standard error of the overall column 1 risk estimates is computed as

\[se(p_{1}) = \sqrt{\frac{\sum_{i} p_{1i}(1 - p_{1i})}{n}}\]

If the two rows represent independent binomial samples, the standard error for the column 1 risk difference is computed as

\[se((pd_{1})) = \sqrt{\frac{var(p_{11}) + var(p_{12})}{n}}\]

The standard errors are computed similarly for the column 2 risks and risk difference.

Using the normal approximation to the binomial distribution, PROC FREQ constructs asymptotic confidence bounds for the risk and risk differences according to

\[est \pm z_{\alpha/2} \cdot se(est)\]

where \(est\) is the estimate, \(z_{\alpha/2}\) is the \((1 - \alpha/2)\) percentile of the standard normal distribution, and \(se\) is the standard error of the estimate. The confidence level \(\alpha\) is determined from the value of the \(\text{ALPHA}=\) option, which, by default, equals 0.05 and produces 95 percent confidence bounds.

PROC FREQ computes exact confidence bounds for the column 1, column 2, and overall risks using the \(F\) distribution method given in Collett (1991), and also described by Leemis and Trivedi (1996). PROC FREQ does not provide exact confidence bounds for the risk differences. Refer to Agresti (1992) for a discussion of issues involved in constructing exact confidence bounds for differences of proportions.

Odds Ratio and Relative Risks for 2×2 Tables

Odds Ratio (Case-Control Studies)

The odds ratio is a useful measure of association for a variety of study designs. For a retrospective design called a case-control study, the odds ratio can be used to estimate the relative risk when the probability of positive response is small (Agresti, 1990). In a case-control study, two independent samples are identified based on a binary (yes-no)
response variable, and the conditional distribution of a binary explanatory variable is examined within fixed levels of the response variable. Refer to Stokes et al. (1995) and Agresti (1996).

The odds of a positive response (column 1) in row 1 is \(n_{11}/n_{12} \). Similarly, the odds of positive response in row 2 is \(n_{21}/n_{22} \). The odds ratio is formed as the ratio of the row 1 odds to the row 2 odds. The odds ratio for \(2 \times 2 \) tables is defined as

\[
OR = \frac{n_{11}/n_{12}}{n_{21}/n_{22}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}
\]

The odds ratio can be any nonnegative number. When the row and column variables are independent, the true value of the odds ratio equals 1. An odds ratio greater than 1 indicates that the odds of a positive response are higher in row 1 than in row 2. Values less than 1 indicate the odds of positive response are higher in row 2. The strength of association increases with the deviation from 1.

The transformation \(G = (OR - 1)/(OR + 1) \) transforms the odds ratio to the range \((-1, 1)\) such that \(G = 0 \) when \(OR = 1 \), \(G = -1 \) when \(OR = 0 \), and \(G = 1 \) when \(OR \) is missing. \(G \) is the gamma statistic, which PROC FREQ computes when you specify the MEASURES option.

The asymptotic 100 \((1 - \alpha)\) percent confidence bounds for the odds ratio are

\[
(\text{OR} \cdot \exp(-z\sqrt{v}), \text{OR} \cdot \exp(z\sqrt{v}))
\]

where

\[
\sqrt{v} = \text{var} \left(\ln \text{OR} \right) = \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}
\]

and \(z \) is the 100 \((1 - \alpha/2)\) percentile of the standard normal distribution. If any of the four cell frequencies are zero, the estimates are not computed.

When you specify the OR option in the EXACT statement PROC FREQ computes exact confidence bounds for the odds ratio using an iterative algorithm based on that presented by Thomas (1971). Because this is a discrete problem, the confidence coefficient for these exact confidence bounds is not exactly \(1 - \alpha \), but is at least \(1 - \alpha \). Thus, these confidence bounds are conservative. Refer to Agresti (1992).

Relative Risks (Cohort Studies)

These measures of relative risk are useful in cohort (prospective) study designs, where two samples are identified based on the presence or absence of an explanatory factor. The two samples are observed in future time for the binary (yes-no) response variable under study. Relative risk measures are also useful in cross-sectional studies, where two variables are observed simultaneously. Refer to Stokes et al. (1995) and Agresti (1996).

The column 1 relative risk is the ratio of the column 1 risks for row 1 to row 2. The column 1 risk for row 1 is the proportion of the row 1 observations classified in column 1,

\[
p_{111} = n_{11}/n_1.
\]
Similarly, the column 1 risk for row 2 is

\[p_1^2 = \frac{n_{21}}{n_2}. \]

The column 1 relative risk is then computed as

\[RR_1 = \frac{p_1^1}{p_1^2} \]

A relative risk greater than 1 indicates that the probability of positive response is greater in row 1 than in row 2. Similarly, a relative risk that is less than 1 indicates that the probability of positive response is less in row 1 than in row 2. The strength of association increases with the deviation from 1.

The asymptotic 100 \((1 - \alpha) \) percent confidence bounds for the column 1 relative risk are

\[\left(RR_1 \cdot \exp\left(-z\sqrt{v}\right), \ RR_1 \cdot \exp\left(z\sqrt{v}\right) \right) \]

where

\[v = \text{var} (\ln RR_1) = \frac{1 - p_1^1}{n_{11}} + \frac{1 - p_1^2}{n_{21}} \]

and \(z \) is the 100 \((1 - \alpha/2) \) percentile of the standard normal distribution. If either \(n_{11} \) or \(n_{21} \) is zero, PROC FREQ does not compute the relative risks.

The column 2 relative risk is computed similarly.

Cochran-Armitage Test for Trend

The TREND option in the TABLES statement requests the Cochran-Armitage test for trend, which tests for trend in binomial proportions across levels of a single factor or covariate. This test is appropriate for a contingency table where one variable has two levels and the other variable is ordinal. The two-level variable represents the response, and the other variable represents an explanatory variable with ordered levels. When the contingency table has two columns and \(R \) rows, PROC FREQ tests for trend across the \(R \) levels of the row variable. When the table has two rows and \(C \) columns, PROC FREQ tests for trend across the \(C \) levels of the column variable.

The trend test is based upon the regression coefficient for the weighted linear regression of the binomial proportions on the scores of the levels of the explanatory variable. Refer to Margolin (1988) and Agresti (1990). If the contingency table has two columns and \(R \) rows, the trend test statistic is computed as

\[T = \frac{\sum_{i=1}^{R} n_{i1} (R_i - \bar{R})}{\sqrt{p_{11} (1 - p_{11}) s^2}} \]
The row scores R_i are determined by the value of the SCORES= option in the TABLES statement. By default, PROC FREQ uses TABLE scores. For character variables, the TABLE scores for the row variable are the row numbers (for example, 1 for the first row, 2 for the second row, and so on). For numeric variables, the TABLE score for each row is the numeric value of the row level. When you perform the trend test, the explanatory variable may be numeric (for example, dose of a test substance), and these variable values may be appropriate scores. If the explanatory variable has ordinal levels that are not numeric, you can assign meaningful scores to the variable levels. Sometimes equidistant scores, such as the TABLE scores for a character variable, may be appropriate. For more information on choosing scores for the trend test, refer to Margolin (1988).

The null hypothesis for the Cochran-Armitage test is no trend, which means the binomial proportion $p_{ij} = n_{ij}/n_i$, is the same for all levels of the explanatory variable. Under this null hypothesis, the trend test statistic is asymptotically distributed as a standard normal random variable. In addition to this asymptotic test, PROC FREQ can compute the exact test for trend, which you request by specifying the TREND option in the EXACT statement. See the “EXACT Statement” on page 506 for information on exact tests.

PROC FREQ computes one-sided and two-sided p-values for the trend test. When the test statistic is greater than its expected value of zero, PROC FREQ computes the right-sided p-value, which is the probability of a larger value of the statistic occurring under the null hypothesis. A small right-sided p-value supports the alternative hypothesis of increasing trend in column 1 probability from row 1 to row R. When the test statistic is less than or equal to zero, PROC FREQ computes the left-sided p-value. A small left-sided p-value supports the alternative of decreasing trend. The one-sided p-value P_1 can be expressed as

\[P_1 = \text{Prob} \ (\text{Trend Statistic} > T) \quad \text{if} \ T > 0 \]
\[P_1 = \text{Prob} \ (\text{Trend Statistic} < T) \quad \text{if} \ T \leq 0 \]

The two-sided p-value P_2 is computed as

\[P_2 = \text{Prob} \ (|\text{Trend Statistic}| > |T|) \]

Jonckheere-Terpstra Test

The JT option in the TABLES statement requests the Jonckheere-Terpstra test, which is a nonparametric test for ordered differences among classes. It tests the null hypothesis that the distribution of the response variable does not differ among classes. It is designed to detect alternatives of ordered class differences, which can be expressed as $\tau_1 \leq \tau_2 \leq \ldots \leq \tau_R$ (or $\tau_1 \geq \tau_2 \geq \ldots \geq \tau_R$) with at least one of the inequalities being strict, where τ_i denotes the effect of class i. For such ordered alternatives, the
Jonckheere-Terpstra test can be preferable to tests of more general class difference alternatives, such as the Kruskal-Wallis test (requested by the WILCOXON option in the NPAR1WAY procedure). Refer to Pirie (1983) and Hollander and Wolfe (1973) for more information about the Jonckheere-Terpstra test.

The Jonckheere-Terpstra test is appropriate for a contingency table where an ordinal column variable represents the response. The row variable, which can be nominal or ordinal, represents the classification variable. The levels of the row variable should be ordered according to the ordering you want the test to detect. The order of variable levels is determined by the ORDER= option in the PROC FREQ statement. The default is ORDER=INTERNAL, which orders by unformatted value. If you specify ORDER=DATA, PROC FREQ orders values according to their order in the input data set. For more information on how to order variable levels, see the ORDER= option on page 505.

The Jonckheere-Terpstra test statistic is computed by first forming \(R (R - 1)/2 \) Mann-Whitney counts \(M_{i,i'} \), where \(i < i' \), for pairs of rows in the contingency table,

\[
M_{i,i'} = \{ \text{number of times } X_{i,j} < X_{i',j'}, \quad j = 1, \ldots, n_i; \quad j' = 1, \ldots, n_{i'} \} + \frac{1}{2} \{ \text{number of times } X_{i,j} = X_{i',j'}, \quad j = 1, \ldots, n_i; \quad j' = 1, \ldots, n_{i'} \}
\]

where \(X_{i,j} \) is response \(j \) in row \(i \). Then the Jonckheere-Terpstra test statistic is computed as

\[
J = \sum_{1 \leq i < i' \leq R} M_{i,i'}
\]

This test rejects the null hypothesis of no difference among classes for large values of \(J \). Asymptotic p-values for the Jonckheere-Terpstra test are obtained by using the normal approximation for the distribution of the standardized test statistic. The standardized test statistic is computed as

\[
J^* = \frac{J - E_0 (J)}{\sqrt{\text{var}_0 (J)}}
\]

where \(E_0 \) and \(\text{var}_0 (J) \) are the expected value and variance of the test statistic under the null hypothesis.

\[
E_0 (J) = \left(n^2 - \sum_i n_i^2 \right) / 4
\]

\[
\text{var}_0 (J) = A/72 + B/ [36n (n - 1) (n - 2)] + C/ [8n (n - 1)]
\]

where
In addition to this asymptotic test, PROC FREQ can compute the exact Jonckheere-Terpstra test, which you request by specifying the JT option in the EXACT statement. See the “EXACT Statement” on page 506 for information on exact tests.

PROC FREQ computes one-sided and two-sided p-values for the Jonckheere-Terpstra test. When the standardized test statistic is greater than its expected value of 0, PROC FREQ computes the right-sided p-value, which is the probability of a larger value of the statistic occurring under the null hypothesis. A small right-sided p-value supports the alternative hypothesis of increasing order from row 1 to row R. When the standardized test statistic is less than or equal to 0, PROC FREQ computes the left-sided p-value. A small left-sided p-value supports the alternative of decreasing order from row 1 to row R. The one-sided p-value, P_1, can be expressed as

$$P_1 = \text{Prob} \left(\text{Std JT Statistic} > J^* \right) \quad \text{if} \quad J^* > 0$$

$$P_1 = \text{Prob} \left(\text{Std JT Statistic} < J^* \right) \quad \text{if} \quad J^* \leq 0$$

The two-sided p-value, P_2, is computed as

$$P_2 = \text{Prob} \left(|\text{Std JT Statistic}| > |J^*| \right)$$

Tests and Measures of Agreement

When you specify the AGREE option in the TABLES statement, PROC FREQ computes tests and measures of agreement for square tables (that is, for tables where the number of rows equals the number of columns). For two-way tables, these tests and measures include McNemar’s test for 2×2 tables, Bowker’s test of symmetry, the simple kappa coefficient, and the weighted kappa coefficient. For multiple strata (n-way tables, where $n > 2$), PROC FREQ computes the overall simple kappa coefficient and the overall weighted kappa coefficient, as well as tests for equal kappas (simple and weighted) among strata. For multiple strata of 2×2 tables, PROC FREQ computes Cochran’s Q.

PROC FREQ computes the kappa coefficients (simple and weighted), their asymptotic standard errors, and their confidence bounds when you specify the AGREE option in the TABLES statement. If you also specify the KAPPA option in the TEST statement, then PROC FREQ computes the asymptotic test of the hypothesis that
simple kappa equals zero. Similarly, if you specify WTKAP in the TEST statement,
PROC FREQ computes the asymptotic test for weighted kappa.

In addition to the asymptotic tests described in this section, PROC FREQ can also
compute the exact p-value for McNemar’s test when you specify the keyword MCNEM
in the EXACT statement. For the kappa statistic, PROC FREQ can compute an exact
test of the hypothesis that kappa (or weighted kappa) equals zero when you specify
KAPPA (or WTKAP) in the EXACT statement. See “Exact Statistics” on page 563 for
more information on these tests.

The discussion of each test and measure of agreement provides the formulas that
PROC FREQ uses to compute the AGREE statistics. For information on the use and
interpretation of these statistics, refer to Agresti (1990), Agresti (1996), Fleiss (1981),
and the references that follow.

McNemar’s Test

PROC FREQ computes McNemar’s test for \(2 \times 2\) tables when you specify the AGREE
option. McNemar’s test is appropriate when you are analyzing data from matched pairs
of subjects with a dichotomous (yes-no) response. It tests for marginal homogeneity, or
a null hypothesis of \(p_1 = p_2\). McNemar’s test is computed as

\[
Q_M = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}}
\]

Under the null hypothesis, \(Q_M\) has an asymptotic chi-square distribution with one
degree of freedom. Refer to McNemar (1947), as well as the references cited on page
551 in the preceding section. PROC FREQ can also compute an exact p-value for
McNemar’s test when you specify MCNEM in the EXACT statement.

Bowker’s Test of Symmetry

For Bowker’s test of symmetry, the null hypothesis is that the probabilities in the
square table satisfy symmetry, or that \(p_{ij} = p_{ji}\) for all pairs of table cells. When there
are more than two categories for each variable, Bowker’s test of symmetry is calculated
as

\[
Q_B = \sum_{i < j} \frac{(n_{ij} - n_{ji})^2}{n_{ij} + n_{ji}}
\]

For large samples, \(Q_B\) has an asymptotic chi-square distribution with \(R(R - 1)/2\)
degrees of freedom under the null hypothesis of symmetry of the expected counts. Refer
to Bowker (1948). For two categories, this test of symmetry is identical to McNemar’s
test.

Simple Kappa Coefficient

The simple kappa coefficient, introduced by Cohen (1960), is a measure of interrater
agreement:

\[
\hat{K} = \frac{P_o - P_e}{1 - P_e}
\]
Tests and Measures of Agreement

where \(P_0 = \sum_i p_{ii} \) and \(P_e = \sum_i p_i \cdot p_{..} \). Viewing the two response variables as two independent ratings of the \(n \) subjects, the kappa coefficient equals +1 when there is complete agreement of the raters. When the observed agreement exceeds chance agreement, the kappa coefficient is positive, with its magnitude reflecting the strength of agreement. Although unusual in practice, kappa is negative when the observed agreement is less than chance agreement. The minimum value of kappa is between -1 and 0, depending on the marginal proportions.

The asymptotic variance of the simple kappa coefficient is estimated by the following, according to Fleiss et al. (1969):

\[
\text{var} = \frac{A + B - C}{(1 - P_e)^2 n}
\]

where

\[
A = \sum_i p_{ii} \left[1 - (p_i \cdot + p_{..}) \left(1 - \hat{K} \right) \right]^2
\]

\[
B = \left(1 - \hat{K} \right)^2 \sum_{i \neq j} p_{ij} \left(p_i + p_{..} \right)^2
\]

and

\[
C = \left[\hat{K} - P_e \left(1 - \hat{K} \right) \right]^2
\]

PROC FREQ computes confidence bounds for the simple kappa coefficient according to

\[
\hat{K} \pm z_{\alpha/2} \cdot \sqrt{\text{var}}
\]

where \(z_{\alpha/2} \) is the 100 \((1 - \alpha/2)\) percentile of the standard normal distribution. The value of \(\alpha \) is determined by the value of the ALPHA= option, which by default equals 0.05 and produces 95 percent confidence bounds.

To compute an asymptotic test for the kappa coefficient, PROC FREQ uses a standardized test statistic \(\hat{K}^* \), which has an asymptotic standard normal distribution under the null hypothesis that kappa equals zero. The standardized test statistic is computed as

\[
\hat{K}^* = \frac{\hat{K}}{\sqrt{\text{var}_0 \left(\hat{K} \right)}}
\]

where \(\text{var}_0 \left(\hat{K} \right) \) is the variance of the kappa coefficient under the null hypothesis.
Refer to Fleiss (1981).

In addition to the asymptotic test for kappa, PROC FREQ computes an exact test when you specify the KAPPA option or the AGREE option in the EXACT statement. See “Exact Statistics” on page 563 for more information on exact tests.

Weighted Kappa Coefficient

The weighted kappa coefficient is a generalization of the simple kappa coefficient, using weights to quantify the relative difference between categories. PROC FREQ computes the weights from the column scores, using either the Cicchetti-Allison weight type or the Fleiss-Cohen weight type, which are described below. The weights \(w_{ij} \) are constructed so that \(0 \leq w_{ij} < 1 \) for all \(i \neq j \), \(w_{ii} = 1 \) for all \(i \), and \(w_{ij} = w_{ji} \). The weighted kappa coefficient is defined as

\[
\hat{K}_w = \frac{P_o(w) - P_e(w)}{1 - P_e(w)}
\]

where

\[
P_o(w) = \sum_i \sum_j w_{ij} p_{ij}
\]

and

\[
P_e(w) = \sum_i \sum_j w_{ij} p_{i*} p_{.j}
\]

The asymptotic variance of the weighted kappa coefficient is estimated by the following, according to Fleiss et al. (1969):

\[
\text{var} = \left\{ \sum_i \sum_j p_{ij} \left[w_{ij} - (\overline{w}_i + \overline{w}_j)(1 - \hat{K}_w) \right]^2 - \left[\hat{K}_w - P_e(w) \left(1 - \hat{K}_w \right)^2 \right] \right\}/\left\{ (1 - P_e(w))^2 n \right\}
\]

where

\[
\overline{w}_i = \sum_j p_{.j} w_{ij}
\]

and
PROC FREQ computes confidence bounds for the weighted kappa coefficient according to

\[\hat{K}_w \pm z_{\alpha/2} \cdot \sqrt{\text{var}} \]

where \(z_{\alpha/2} \) is the 100 \((1 - \alpha/2)\) percentile of the standard normal distribution. The value of \(\alpha \) is determined by the value of the ALPHA= option, which by default equals 0.05 and produces 95 percent confidence bounds.

To compute an asymptotic test for the weighted kappa coefficient, PROC FREQ uses a standardized test statistic \(\hat{K}_w^* \), which has an asymptotic standard normal distribution under the null hypothesis. The standardized test statistic is computed as

\[\hat{K}_w^* = \frac{\hat{K}_w}{\sqrt{\text{var}_0 (\hat{K}_w)}} \]

where \(\text{var}_0 (\hat{K}_w) \) is the variance of the kappa coefficient under the null hypothesis.

\[
\text{var}_0 (\hat{K}_w) = \frac{\sum_{i,j} p_{i,j} [w_{ij} - (\bar{w}_i + \bar{w}_j)]^2 - P_{e(w)}^2}{(1 - P_{e(w)})^2 n}
\]

Refer to Fleiss (1981).

In addition to the asymptotic test for weighted kappa, PROC FREQ computes the exact test when you specify the WTKAP option or the AGREE option in the EXACT statement. See “Exact Statistics” on page 563 for more information on exact tests.

PROC FREQ computes kappa coefficient weights using the column scores and one of two available weight types. The column scores are determined by the SCORES= option in the TABLES statement. The two available weight types are Cicchetti-Allison and Fleiss-Cohen. By default, PROC FREQ uses the Cicchetti-Allison type. If you specify WT=FC in the AGREE option, then PROC FREQ uses the Fleiss-Cohen weight type to construct kappa weights.

PROC FREQ computes Cicchetti-Allison kappa coefficient weights using a form similar to that given by Cicchetti and Allison (1971).

\[w_{ij} = 1 - \frac{|C_i - C_j|}{C_C - C_1} \]

where \(C_i \) is the score for column \(i \), and \(C \) is the number of categories. You can specify the type of score using the SCORES= option in the TABLES statement. If you do not specify the SCORES= option, PROC FREQ uses TABLE scores. For numeric variables, TABLE scores are the values of the numeric row and column headings. You can assign
numeric values to the categories in a way that reflects their level of similarity. For example, suppose you have four categories and order them according to similarity. If you assign them values of 0, 2, 4, and 10, the following weights are used for computing the weighted kappa coefficient: \(w_{12} = .8, w_{13} = .6, w_{14} = 0, w_{23} = .8, w_{24} = .2, \) and \(w_{34} = .4. \) Note that when there are only two categories (that is, \(C = 2 \)), the weighted kappa coefficient is identical to the simple kappa coefficient.

If you specify (WT=FC) with the AGREE option in the TABLES statement, PROC FREQ computes Fleiss-Cohen kappa coefficient weights using a form similar to that given by Fleiss and Cohen (1973).

\[
w_{ij} = 1 - \frac{(C_i - C_j)^2}{(C_C - C_1)^2}
\]

Overall Kappa Coefficient

When there are multiple strata, PROC FREQ combines the stratum-level estimates of kappa into an overall estimate of the supposed common value of kappa. Assume there are \(q \) strata, indexed by \(h = 1, 2, \ldots, q, \) and let \(V_h \left(\hat{\kappa}_h \right) \) denote the variance of \(\hat{\kappa}_h. \) Then the estimate of the overall kappa, according to Fleiss (1981), is computed as follows:

\[
\hat{\kappa}_{overall} = \sum_{h=1}^{q} \frac{\hat{\kappa}_h / \text{var} \left(\hat{\kappa}_h \right)}{\sum_{h=1}^{q} \frac{1}{\text{var} \left(\hat{\kappa}_h \right)}}
\]

An estimate of the overall weighted kappa is computed similarly.

Tests for Equal Kappa Coefficients

The following chi-square statistic, with \(q - 1 \) degrees of freedom, is used to test whether the values of the kappa are equal among the \(q \) strata:

\[
Q_K = \sum_{h=1}^{q} \frac{\left(\hat{\kappa}_h - \hat{\kappa}_{overall} \right)^2}{\text{var} \left(\hat{\kappa}_h \right)}
\]

A similar test is done for weighted kappa coefficients.

Cochran’s Q Test

When there are multiple strata and two response categories, Cochran’s Q statistic is used to test the homogeneity of the one-dimensional margins. Let \(m \) denote the number of variables and \(N \) denote the total number of subjects. Then Cochran’s Q statistic is computed as follows:
Cochran-Mantel-Haenszel Statistics

For \(n \)-way crosstabulation tables, consider the following example:

```sas
proc freq;
   tables a*b*c*d / cmh;
run;
```

The CMH option in the TABLES statement gives a stratified statistical analysis of the relationship between C and D, controlling for A and B. The stratified analysis provides a way to adjust for the possible confounding effects of A and B without being forced to estimate parameters for them. The analysis produces Cochran-Mantel-Haenszel statistics, and for \(2 \times 2 \) tables, it includes estimation of the common odds ratio, common relative risks, and the Breslow-Day test for homogeneity of the odds ratios.

Let the number of strata be denoted by \(q \), indexing the strata by \(h = 1, 2, \ldots, q \). Each stratum contains a contingency table with \(X \) representing the row variable and \(Y \) representing the column variable. For table \(h \), denote the cell frequency in row \(i \) and column \(j \) by \(n_{hij} \), with corresponding row and column marginal totals denoted by \(n_{hi} \) and \(n_{hj} \) and the overall stratum total by \(n_h \).

\[
Q_C = (m - 1) \frac{\sum_{j=1}^{m} T_j^2 - T^2}{mT - \sum_{k=1}^{N} S_k^2}
\]

where \(T_j \) is the number of positive responses for variable \(j \), \(T \) is the total number of positive responses over all variables, and \(S_k \) is the number of positive responses for subject \(k \). Under the null hypothesis, Cochran’s Q is an approximate chi-square statistic with \(m - 1 \) degrees of freedom. Refer to Cochran (1950). When there are two variables, Cochran’s Q simplifies to McNemar’s statistic. When there are more than two response categories, you can test for marginal homogeneity using the repeated measures capabilities of the CATMOD procedure.

Tables with Zero Rows or Columns

For multiway tables, PROC FREQ does not compute CHISQ or MEASURES statistics for a stratum with a zero row or a zero column because most of these statistics are undefined. However, PROC FREQ does compute AGREE statistics for tables with a zero row or a zero column. Therefore, the analysis includes all row and column variable levels that occur in any stratum. It does not include levels that do not occur in any stratum, even if such observations are in the data set with zero weight, because PROC FREQ does not process observations with zero weights (as described in “WEIGHT Statement” on page 523). And, for a two-way table where there is no stratification, the analysis includes only those levels that occur with nonzero weight.

To include a variable level with no observations in the analysis, you can assign an extremely small weight (such as 1E-8) to an observation with that variable level. Then the analysis includes this variable level, but the statistic value remains unchanged because the weight is so small. For example, suppose you need to compute a kappa coefficient for data for two raters. One rater uses all possible ratings (say, 1, 2, 3, 4, and 5), but another rater uses only four of the available ratings (1, 2, 3, and 4). You can create an observation where the second rater uses the rating level 5, and assign it a weight of 1E-8. This forms a \(5 \times 5 \) square table for the analysis.

Cochran-Mantel-Haenszel Statistics

For \(n \)-way crosstabulation tables, consider the following example:
Because the formulas for the Cochran-Mantel-Haenszel statistics are more easily defined in terms of matrices, the following notation is used. Vectors are presumed to be column vectors unless they are transposed (').

\[
\begin{align*}
n'_{hi} &= (n_{h1i}, n_{h2i}, \ldots, n_{hCi}) \quad (1 \times C) \\
n'_{h} &= (n'_{h1}, n'_{h2}, \ldots, n'_{hR}) \quad (1 \times RC) \\
p_{hi} &= \frac{n_{hi}}{n_{h}} \quad (1 \times 1) \\
p_{h} &= \frac{n_{h}}{n_h} \quad (1 \times 1) \\
P'_{h+k} &= (p_{h1}, p_{h2}, \ldots, p_{hR}) \quad (1 \times R) \\
P'_{h+k} &= (p_{h1+}, p_{h2+}, \ldots, p_{hR+}) \quad (1 \times C)
\end{align*}
\]

Assume that the strata are independent and that the marginal totals of each stratum are fixed. The null hypothesis, \(H_0 \), is that there is no association between \(X \) and \(Y \) in any of the strata. The corresponding model is the multiple hypergeometric, which implies that under \(H_0 \), the expected value and covariance matrix of the frequencies are, respectively,

\[
m_h = E[n_h | H_0] = n_h (P_{h+k} \otimes P_{h+k})
\]

and

\[
\text{var} [n_h | H_0] = c [(Dp_{h+k} - P_{h+k}P'_{h+k}) \\
\otimes (Dp_{h+k} - P_{h+k}P'_{h+k})]
\]

where

\[
c = \frac{n_h^2}{n_h - 1}
\]

and where \(\otimes \) denotes Kronecker product multiplication and \(D_a \) is a diagonal matrix with elements of \(a \) on the main diagonal.

The generalized CMH statistic (Landis, Heyman, and Koch 1978) is defined as

\[
Q_{CMH} = G'V_G^{-1}G
\]

where

\[
G = \sum_h B_h (n_h - m_h)
\]

\[
V_G = \sum_h B_h \left(\text{Var} (n_h | H_0) \right) B_h'
\]
and where

\[\mathbf{B}_h = \mathbf{C}_h \otimes \mathbf{R}_h \]

is a matrix of fixed constants based on column scores \(\mathbf{C}_h \) and row scores \(\mathbf{R}_h \). When the null hypothesis is true, the CMH statistic has an asymptotic chi-square distribution with degrees of freedom equal to the rank of \(\mathbf{B}_h \). If \(\mathbf{V}_G \) is found to be singular, PROC FREQ displays a message and sets the value of the CMH statistic to missing.

PROC FREQ computes three CMH statistics using this formula for the generalized CMH statistic, with different row and column score definitions for each statistic. The CMH statistics that PROC FREQ computes are the correlation statistic, the ANOVA (row mean scores) statistic, and the general association statistic. These statistics test the null hypothesis of no association against different alternative hypotheses. The following sections describe the computation of these CMH statistics.

CAUTION: CMH statistics have low power for detecting an association when the patterns of association for some of the strata are in the opposite direction of the patterns displayed by other strata. Thus, a nonsignificant CMH statistic suggests either that there is no association or that no pattern of association has enough strength or consistency to dominate any other pattern.

Correlation Statistic

The correlation statistic, with one degree of freedom, was popularized by Mantel and Haenszel (1959) and Mantel (1963) and is therefore known as the Mantel-Haenszel statistic.

The alternative hypothesis is that there is a linear association between \(X \) and \(Y \) in at least one stratum. If either \(X \) or \(Y \) does not lie on an ordinal (or interval) scale, then this statistic is meaningless.

To compute the correlation statistic, PROC FREQ uses the formula for the generalized CMH statistic with the row and column scores determined by the SCORES= option in the TABLES statement. See “Scores” on page 527 for more information on the available score types. The matrix of row scores \(\mathbf{R}_h \) has dimension \(1 \times R \), and the matrix of column scores \(\mathbf{C}_h \) has dimension \(1 \times C \).

When there is only one stratum, this CMH statistic reduces to \((n - 1)R^2 \), where \(R \) is the Pearson correlation coefficient between \(X \) and \(Y \). When you specify nonparametric (RANK, RIDIT, or MODRIDIT) scores, the statistic reduces to \((n - 1) \rho_S^2 \), where \(\rho_S \) is the Spearman rank correlation coefficient between \(X \) and \(Y \). When there is more than one stratum, then the CMH statistic becomes a stratum-adjusted correlation statistic.

ANOVA (Row Mean Scores) Statistic

The ANOVA statistic can be used only when the column variable \(Y \) lies on an ordinal (or interval) scale so that the mean score of \(Y \) is meaningful. For the ANOVA statistic, the mean score is computed for each row of the table, and the alternative hypothesis is that, for at least one stratum, the mean scores of the \(R \) rows are unequal. In other words, the statistic is sensitive to location differences among the \(R \) distributions of \(Y \).

The matrix of column scores \(\mathbf{C}_h \) has dimension \(1 \times C \), and the scores, one for each column, are specified in the SCORES= option. The matrix \(\mathbf{R}_h \) has dimension \((R - 1) \times R \) which PROC FREQ creates internally as

\[\mathbf{R}_h = [\mathbf{I}_{R-1}, -J_{R-1}] \]
where \(\mathbf{I}_{R-1} \) is an identity matrix of rank \(R - 1 \), and \(\mathbf{J}_{R-1} \) is an \((R - 1) \times 1\) vector of ones. This matrix has the effect of forming \(R - 1 \) independent contrasts of the \(R \) mean scores.

When there is only one stratum, this CMH statistic is essentially an analysis-of-variance (ANOVA) statistic in the sense that it is a function of the variance ratio \(F \) statistic that would be obtained from a one-way ANOVA on the dependent variable \(Y \). If nonparametric scores are specified in this case, then the ANOVA statistic is a Kruskal-Wallis test.

If there is more than one stratum, then this CMH statistic corresponds to a stratum-adjusted ANOVA or Kruskal-Wallis test. In the special case where there is one subject per row and one subject per column in the contingency table of each stratum, then this CMH statistic is identical to Friedman's chi-square. See Example 8 on page 593 for an illustration.

General Association Statistic

The alternative hypothesis for the general association statistic is that, for at least one stratum, there is some kind of association between \(X \) and \(Y \). This statistic is always interpretable because it does not require an ordinal scale for either \(X \) or \(Y \).

For the general association statistic, the matrix \(\mathbf{R}_h \) is the same as the one used for the ANOVA statistic. The matrix \(\mathbf{C}_h \) is defined similarly as

\[
\mathbf{C}_h = [\mathbf{I}_{C-1}, -\mathbf{J}_{C-1}]
\]

PROC FREQ generates both score matrices internally. When there is only one stratum, then the general association CMH statistic reduces to \(Q_P \frac{(n - 1)}{n} \), where \(Q_P \) is the Pearson chi-square statistic. When there is more than one stratum, then the CMH statistic becomes a stratum-adjusted Pearson chi-square statistic. Note that a similar adjustment is made by summing the Pearson chi-squares across the strata. However, the latter statistic requires a large sample size in each stratum to support the resulting chi-square distribution with \(q(R - 1)(C - 1) \) degrees of freedom. The CMH statistic requires only a large overall sample size because it has only \((R - 1)(C - 1)\) degrees of freedom.

Refer to Cochran (1954); Mantel and Haenszel (1959); Mantel (1963); Birch (1965); and Landis et al. (1978).

Adjusted Odds Ratio and Relative Risk Estimates

The CMH option provides adjusted odds ratio and relative risk estimates for stratified \(2 \times 2 \) tables. For each of these measures, PROC FREQ computes the Mantel-Haenszel estimate and the logit estimate. These estimates apply to \(n \)-way table requests in the TABLES statement, when the row and column variables both have only two levels. For example,

```plaintext
proc freq;
  tables a*b+c*d / cmh;
run;
```

In this example, if the row and column variables \(C \) and \(D \) both have two levels, PROC FREQ provides odds ratio and relative risk estimates, adjusting for the confounding variables \(A \) and \(B \).

The choice of an appropriate measure depends on the study design. For case-control (retrospective) studies, the odds ratio is appropriate. For cohort (prospective) or cross-sectional studies, the relative risk is appropriate. See “Odds Ratio and Relative Risks for \(2 \times 2 \) Tables” on page 545 for more information on these measures.
Throughout this section, z is the 100 $(1 - \alpha/2)$ percentile of the standard normal distribution.

Odds Ratio (Case-control Studies): Mantel-Haenszel Adjusted

The Mantel-Haenszel adjusted odds ratio estimator is given by

$$OR_{\text{MHT}} = \frac{\sum n_{h11}n_{h22}/n_h}{\sum n_{h12}n_{h21}/n_h}$$

It is always computed unless the denominator is zero. Refer to Mantel and Haenszel (1959) and Agresti (1990).

Using the estimated variance for $\log(OR_{\text{MHT}})$ given by Robins et al. (1986), PROC FREQ computes the corresponding 100 $(1 - \alpha)$ percent confidence bounds for the odds ratio as

$$(OR_{\text{MHT}} \cdot \exp(-z\hat{\sigma}), OR_{\text{MHT}} \cdot \exp(z\hat{\sigma}))$$

where

$$\hat{\sigma}^2 = \nu\hat{\nu}r^2 [\ln OR_{\text{MHT}}]$$

$$= \left[\sum_h (n_{h11} + n_{h22})(n_{h11}n_{h22})/n_h^2 \right]$$

$$+ 2\left[\sum_h n_{h11}n_{h22}/n_h \right]^2$$

$$+ \left[\sum_h ((n_{h11} + n_{h22})(n_{h12}n_{h21}) +$$

$$+ (n_{h12} + n_{h21})(n_{h11}n_{h22})/n_h^2 \right]/$$

$$2\left(\sum_h n_{h11}n_{h22}/n_h \right)\left(\sum_h n_{h12}n_{h21}/n_h \right)$$

$$+ \left[\sum_h (n_{h12} + n_{h21})(n_{h12}n_{h21})/n_h^2 \right]/$$

$$2\left(\sum_h n_{h12}n_{h21}/n_h \right)^2$$

Note that the Mantel-Haenszel odds ratio estimator is less sensitive to small n_h than the logit estimator.

Odds Ratio (Case-control Studies): Adjusted Logit

The adjusted logit odds ratio estimator (Woolf 1955) is given by

$$OR_c = \exp \left(\frac{\sum w_h \ln OR_h}{\sum w_h} \right)$$
and the corresponding $100 \ (1 - \alpha)$ percent confidence bounds are

$$\left(OR_h \cdot \exp \left(\frac{-z}{\sqrt{\sum_h w_h}} \right), \ OR_h \cdot \exp \left(\frac{z}{\sqrt{\sum_h w_h}} \right) \right)$$

where OR_h is the odds ratio for stratum h, and

$$w_h = \frac{1}{\text{var} (\ln OR_h)}$$

Refer to Woolf (1955)

If any cell frequency in a stratum h is zero, then PROC FREQ adds 0.5 to each cell of the stratum before computing OR_h and w_h (Haldane 1955), and displays a warning.

Relative Risks (Cohort Studies)

The Mantel-Haenszel estimate of the common relative risk for column 1 is computed as

$$\text{RR}_{\text{M-H}} = \frac{\sum_h n_{h11}n_{h21}/n_h}{\sum_h n_{h12}n_{h11}/n_h}$$

It is always computed unless the denominator is zero. Refer to Mantel and Haenszel (1959) and Agresti (1990).

Using the estimated variance for $\log (\text{RR}_{\text{M-H}})$ given by Greenland and Robins (1985), PROC FREQ computes the corresponding confidence $100 \ (1 - \alpha)$ percent bounds for the relative risk as

$$\left(\text{RR}_{\text{M-H}} \cdot \exp (-z\hat{\sigma}), \ \text{RR}_{\text{M-H}} \cdot \exp (z\hat{\sigma}) \right)$$

where

$$\hat{\sigma}^2 = \text{var}^2 [\ln \text{RR}_{\text{M-H}}] = \frac{\sum_h (n_{h11}n_{h21}n_{h1} - n_{h11}n_{h21}n_h)/n_h^2}{\left(\sum_h n_{h11}n_{h21}/n_h \right) \left(\sum_h n_{h21}n_{h11}/n_h \right)}$$

The adjusted logit estimate of the common relative risk for column 1 is computed as
\[\text{RR}_e = \exp \left(\frac{\sum_h w_h \ln \text{RR}_h}{\sum w_h} \right) \]

and the corresponding 100 \((1 - \alpha)\) percent confidence bounds are

\[\left(\text{RR}_e \cdot \exp \left(\frac{-z}{\sqrt{\sum_h w_h}} \right), \text{RR}_e \cdot \exp \left(\frac{z}{\sqrt{\sum_h w_h}} \right) \right) \]

where \(\text{RR}_h\) is the column 1 relative risk estimator for stratum \(h\), and

\[w_h = \frac{1}{\text{var} (\ln \text{RR}_h)} \]

If \(n_{h11}\) or \(n_{h21}\) is zero, then PROC FREQ adds 0.5 to each cell of the stratum before computing \(\text{RR}_h\) and \(w_h\), and displays a warning.

Refer to Kleinbaum, Kupper, and Morgenstern (1982, Sections 17.4, 17.5) and Breslow and Day (1994).

Breslow-Day Test for Homogeneity of the Odds Ratios

When you specify the CMH option, PROC FREQ computes the Breslow-Day test for the stratified analysis of 2x2 tables. It tests the null hypothesis that the odds ratios from the \(q\) strata are all equal. When the null hypothesis is true, the statistic has an asymptotic chi-square distribution with \(q - 1\) degrees of freedom.

The Breslow-Day statistic is computed as

\[Q_{\text{B&D}} = \frac{\sum_h (n_{h11} - \text{E} (n_{h11} | \text{OR}_{\text{str}}))^2}{\text{var} (n_{h11} | \text{OR}_{\text{str}})} \]

where \(\text{E}\) and \(\text{var}\) denote expected value and variance, respectively. The summation does not include any tables with a zero row or column. If \(\text{OR}_{\text{str}}\) equals zero or if it is undefined, then PROC FREQ does not compute the statistic, and displays a warning message.

CAUTION:

Unlike the Cochran-Mantel-Haenszel statistics, the Breslow-Day test requires a large sample size within each stratum, and this limits its usefulness. In addition, the validity of the CMH tests does not depend on any assumption of homogeneity of the odds ratios, and therefore, the Breslow-Day test should never be used as an indicator of validity. △

Refer to Breslow and Day (1993).
Exact Statistics

Exact statistics can be useful in situations where the asymptotic assumptions are not met, and so the asymptotic p-values are not close approximations for the true p-values. Standard asymptotic methods involve the assumption that the test statistic follows a particular distribution when the sample size is sufficiently large. When the sample size is not large, asymptotic results may not be valid, with the asymptotic p-values differing perhaps substantially from the exact p-values. Asymptotic results may also be unreliable when the distribution of the data is sparse, skewed, or heavily tied. Refer to Agresti (1996) and Bishop et al. (1975). Exact computations are based on the statistical theory of exact conditional inference for contingency tables, reviewed by Agresti (1992).

PROC FREQ provides exact p-values for the following tests for two-way tables: Pearson chi-square, likelihood-ratio chi-square, Mantel-Haenszel chi-square, Fisher's exact test, Jonckheere-Terpstra test, Cochran-Armitage test for trend, and McNemar's test. PROC FREQ can also compute exact p-values for tests of hypotheses that the following statistics are equal to zero: Pearson correlation coefficient, Spearman correlation coefficient, simple kappa coefficient, and weighted kappa coefficient. Additionally, PROC FREQ can compute exact confidence bounds for the odds ratio for 2×2 tables. For one-way frequency tables, PROC FREQ provides the exact chi-square goodness-of-fit test (for equal proportions, or for proportions or frequencies that you specify). Also for one-way tables, PROC FREQ provides exact confidence bounds for the binomial proportion, and an exact test for the binomial proportion value.

The following sections summarize the computational algorithms, define the p-values that PROC FREQ computes, and discuss the computational resource requirements.

Computational Algorithms

PROC FREQ computes exact p-values for general R×C tables using the network algorithm developed by Mehta and Patel (1983). This algorithm provides a substantial advantage over direct enumeration, which can be very time-consuming and feasible only for small problems. Refer to Agresti (1992) for a review of algorithms for computation of exact p-values, and refer to Mehta et al. (1984, 1991) for information on the performance of the network algorithm.

The reference set for a given contingency table is the set of all contingency tables with the observed marginal row and column sums. Corresponding to this reference set, the network algorithm forms a directed acyclic network consisting of nodes in a number of stages. A path through the network corresponds to a distinct table in the reference set. The distances between nodes are defined so that the total distance of a path through the network is the corresponding value of the test statistic. At each node, the algorithm computes the shortest and longest path distances for all the paths that pass through that node. For statistics that can be expressed as a linear combination of cell frequencies multiplied by increasing row and column scores, PROC FREQ computes shortest and longest path distances using the algorithm given in Agresti et al. (1990). For statistics of other forms, PROC FREQ computes an upper bound for the longest path and a lower bound for the shortest path following the approach of Valz and Thompson (1994).

The longest and shortest path distances or bounds for a node are compared to the value of the test statistic to determine whether all paths through the node contribute to the p-value, none of the paths through the node contribute to the p-value, or neither of these situations occur. If all paths through the node contribute, the p-value is incremented accordingly, and these paths are eliminated from further analysis. If no paths contribute, these paths are eliminated from the analysis. Otherwise, the algorithm continues, still processing this node and the associated paths. The algorithm
finishes when all nodes have been accounted for, incrementing the \(p \)-value accordingly, or eliminated.

In applying the network algorithm, PROC FREQ uses full precision to represent all statistics, row and column scores, and other quantities involved in the computations. Although it is possible to use rounding to improve the speed and memory requirements of the algorithm, PROC FREQ does not do this because it can result in reduced accuracy of the \(p \)-values.

PROC FREQ computes exact confidence bounds for the odds ratio according to an iterative algorithm based on that presented by Thomas (1971). Refer also to Gart (1971). Because this is a discrete problem, the confidence coefficient is not exactly \(1 - \alpha \), but is at least \(1 - \alpha \). Thus, these confidence bounds are conservative.

For one-way tables, PROC FREQ computes the exact chi-square goodness-of-fit test by the method of Radlow and Alf (1975). PROC FREQ generates all possible one-way tables with the observed total sample size and number of categories. For each possible table, PROC FREQ compares its chi-square value with the value for the observed table. If the table's chi-square value is greater than or equal to the observed chi-square, PROC FREQ increments the exact \(p \)-value by the probability of that table, which is calculated under the null hypothesis using the multinomial frequency distribution. By default, the null hypothesis states that all categories have equal proportions. If you specify null hypothesis proportions or frequencies using the TESTP= or TESTF= option in the TABLES statement, then PROC FREQ calculates the exact chi-square test based on that null hypothesis.

For binomial proportions in one-way tables, PROC FREQ computes exact confidence bounds using the \(F \) distribution method given in Collett (1991) and also described by Leemis and Trivedi (1996). PROC FREQ computes the exact test for a binomial proportion \(H_0 : p = p_0 \) by summing binomial probabilities over all alternatives. See “Binomial Proportion” on page 542 for details. By default PROC FREQ uses \(p_0 = 0.5 \) as the null hypothesis proportion. Alternatively, you can specify the null hypothesis proportion with the P= option in the TABLES statement.

Definition of \(p \)-Values

For several tests in PROC FREQ, the test statistic is nonnegative, and large values of the test statistic indicate a departure from the null hypothesis. Such tests include the Pearson chi-square, the likelihood-ratio chi-square, the Mantel-Haenszel chi-square, Fisher's exact test for tables larger than 2\(\times \)2 tables, McNemar's test, and the one-way goodness-of-fit test. The exact \(p \)-value for these nondirectional tests is the sum of probabilities for those tables having a test statistic greater than or equal to the value of the observed test statistic.

There are other tests where it may be appropriate to test against either a one-sided or a two-sided alternative hypothesis. For example, when you test the null hypothesis that the true parameter value equals zero (\(T = 0 \)), the alternative of interest may be one-sided (\(T < 0 \), or \(T > 0 \)) or two-sided (\(T \neq 0 \)). Such tests include the Pearson correlation coefficient, Spearman correlation coefficient, J onckheere-Terpstra test, Cochran-Armitage test for trend, simple kappa coefficient, and weighted kappa coefficient. For these tests, PROC FREQ computes the right-sided \(p \)-value when the observed value of the test statistic is greater than its expected value. The right-sided \(p \)-value is the sum of probabilities for those tables having a test statistic greater than or equal to the observed test statistic. Otherwise, when the test statistic is less than or equal to its expected value, PROC FREQ computes the left-sided \(p \)-value. The left-sided \(p \)-value is the sum of probabilities for those tables having a test statistic less than or equal to the one observed. The one-sided \(p \)-value \(P_1 \) can be expressed as
\[P_1 = \text{Prob (Test Statistic} \geq t) \quad \text{if} \quad t > E_0 (T) \]
\[P_1 = \text{Prob (Test Statistic} \leq t) \quad \text{if} \quad t \leq E_0 (T) \]

where \(t \) is the observed value of the test statistic, and \(E_0 (T) \) is the expected value of the test statistic under the null hypothesis. PROC FREQ computes the two-sided \(p \)-value as the sum of the one-sided \(p \)-value and the corresponding area in the opposite tail of the distribution of the statistic, equidistant from the expected value. The two-sided \(p \)-value \(P_2 \) can be expressed as

\[P_2 = \text{Prob} (|\text{Test Statistic} - E_0 (T)| \geq |t - E_0 (T)|) \]

Computational Resources

PROC FREQ uses relatively fast and efficient algorithms for exact computations. These recently developed algorithms, together with improvements in computer power, make it feasible now to perform exact computations for data sets where previously only asymptotic methods could be applied. Nevertheless, there are still large problems that may require a prohibitive amount of time and memory for exact computations, depending on the speed and memory available on your computer. For large problems, consider whether exact methods are really needed or whether asymptotic methods might give results quite close to the exact results, while requiring much less computer time and memory.

A formula does not exist that can determine in advance how much time or memory that PROC FREQ needs to compute an exact \(p \)-value for a certain problem. The time and memory requirements depend on several factors which include the test that is performed, the total sample size, the number of rows and columns, and the specific arrangement of the observations into table cells. Generally, larger problems (in terms of total sample size, number of rows, and number of columns) tend to require more time and memory. Additionally, for a fixed total sample size, time and memory requirements tend to increase as the number of rows and columns increases, because this corresponds to an increase in the number of tables in the reference set. Also for a fixed sample size, time and memory requirements increase as the marginal row and column totals become more homogeneous. Refer to Agresti et al. (1992) and Gail and Mantel (1977).

At any time while PROC FREQ computes exact \(p \)-values, you can terminate the computations by pressing the system interrupt key sequence (refer to the SAS Companion for your operating environment) and choosing to stop computations. After you terminate exact computations, PROC FREQ completes all other remaining tasks that the procedure specifies. The procedure produces the requested output, reporting missing values for any exact \(p \)-values that were not computed by the time of termination.

You can also use the MAXTIME= option in the EXACT statement to limit the amount of time PROC FREQ uses for exact computations. You specify a MAXTIME= value that is the maximum amount of time (in seconds) that PROC FREQ can use to compute an exact \(p \)-value. If PROC FREQ does not finish computing an exact \(p \)-value within that time, it terminates the computation and completes all other remaining tasks.
Missing Values

By default, PROC FREQ excludes missing values before it constructs the frequency and crosstabulation tables. PROC FREQ also excludes missing values before computing statistics. However, PROC FREQ displays the total frequency of observations with missing values below each table. The following options in the TABLES statement change how PROC FREQ handles missing values:

MISSPRINT

includes missing value frequencies in frequency or crosstabulation tables

MISSING

includes missing values in percentage and statistical calculations.

The OUT= option in the TABLES statement includes an observation in the output data set that contains the frequency of missing values. The NMISS keyword in the OUTPUT statement creates a variable in the output data set that contains the number of missing values.

Output 20.3 on page 567 shows three ways that PROC FREQ handles missing values. The first table uses the default method; the second table uses MISSPRINT; and the third table uses MISSING.
When a combination of variable values for a crosstabulation is missing, PROC FREQ assigns zero to the frequency count for the table cell. By default, PROC FREQ omits missing combinations in list format and in the output data set that is created with a TABLES statement. To include the missing combinations, use SPARSE with LIST or OUT= in the TABLES statement.

PROC FREQ treats missing BY variable values like any other BY variable value. The missing values form a separate BY group. When the value of a WEIGHT variable is missing, PROC FREQ excludes the observation from the analysis.

Procedure Output

By default, a one-way table lists the variable name, variable values, frequency counts, percentages, cumulative frequency counts, cumulative percentages, and the number of missing values. Unless you use LIST in the TABLES statement, a two-way table appears as a crosstabulation table. An n-way table appears as multiple crosstabulation tables with one table for each combination of values for the stratification variables. By default, each cell of a crosstabulation table lists the frequency count, percentage of the total frequency count, row percentage, and column percentage.

Use the following TABLES statement options to report additional information for each table cell:
CELLCHI2
includes the cell’s contribution to the total chi-square statistic

CUMCOL
includes the cumulative column percentage of the cell

DEVIATION
includes the deviation of the cell frequency from the expected value

EXPECTED
includes the expected cell frequency under the hypothesis of independence.

You can also use the SCOROUT option to display the type of score, row score, and column score for two-way tables.

By default, PROC FREQ displays the next one-way frequency table on the current page when there is enough space to display the entire table. If you use COMPRESS in the PROC FREQ statement, the next one-way table starts to display on the current page even when the entire table will not fit. If you use PAGE in the PROC FREQ statement, each frequency or crosstabulation table always displays on a separate page.

Displaying Large Frequencies

By default, PROC FREQ uses the BEST6. format to display a cell frequency when the frequency is less than 1E6. Otherwise, it uses the BEST7. format so that frequency values with more than seven significant digits display in scientific notation (E format). The V5FMT option in the TABLES statement uses BEST8. format so that frequency values with more than eight significant digits display in scientific notation.

When scientific notation is used, only the first few significant digits are shown. If you need more significant digits than PROC FREQ displays, create an output data set by specifying OUT= in the TABLES statement. Then use PROC PRINT and assign an appropriate format to the variable COUNT. For example, the statement

format count 10.;

displays exact integer counts up to 9999999999. For more information about formats, see the section on components of the SAS Language in SAS Language Reference: Concepts.

Suppressing the Displayed Output

The NOPRINT option in the PROC FREQ statement and NOPRINT, NOCOL, NOCUM, NOFREQ, NOPERCENT, and NOROW in the TABLES statement suppress displayed output. Use NOPRINT in the PROC FREQ statement to suppress all displayed output as well as the Output Delivery System. Use NOPRINT in the TABLES statement to suppress frequency and crosstabulation tables but still display the requested statistics. Use NOCOL, NOCUM, NOFREQ, NOPERCENT, and NOROW to suppress various frequencies and percentages in the frequency and crosstabulation tables.

CAUTION:
Multiway tables can generate a great deal of displayed output. For example, if the variables A, B, C, D, and E each have ten levels, the table request A*B*C*D*E may generate 1000 or more pages of output. If you are primarily interested in the tests and measures of association, use NOPRINT in the TABLES statement to suppress the tables but display the statistics. Or use NOPRINT in the PROC FREQ statement to suppress all displayed output, and use the OUTPUT statement to store the
statistics in an output data set. If you are interested in frequency counts and percentages use LIST in the TABLES statement.

Output Data Sets

PROC FREQ produces two types of output data sets that you can use with other statistical and reporting procedures. These data sets are produced as follows:

- **TABLES statement, OUT= option**
 - creates an output data set that contains frequency or crosstabulation table counts and percentages.
- **OUTPUT statement**
 - creates an output data set that contains statistics.

PROC FREQ does not display the output data set. Use PROC PRINT, PROC REPORT, or any other SAS reporting tool to display the output data set.

Contents of the TABLES Statement Output Data Set

The OUT= option in the TABLES statement creates an output data set that contains one observation for each combination of the variable values in the last table request. By default, each observation contains the frequency and percentage for each combination of variable values. When the input data set contains missing values, the output data set contains an observation with the frequency of missing values. The output data set includes the following variables:

- BY variables
- table request variables, such as A, B, C, and D in the table request A*B*C*D
- COUNT variable containing the cell frequency
- PERCENT variable containing the cell percentage.

If you use OUTEXPECT and OUTPCT, the output data set also contains expected frequencies and row, column, and table percentages, respectively. The additional variables are

- EXPECTED variable containing the expected frequency
- PCT_TABLE variable containing the percentage of two-way table frequency, for n-way tables where n > 2
- PCT_ROW variable containing the percentage of row frequency
- PCT_COL variable containing the percentage of column frequency.

When you submit the following statements

```sas
proc freq;
  tables a a*b / out=D;
run;
```

the output data set D contains frequencies and percentages for the last table request, A*B. If A has two levels (1 and 2), B has three levels (1, 2, and 3), and no table cell count is zero or missing, the output data set D includes six observations, one for each combination of A and B. The first observation corresponds to A=1 and B=1; the second observation corresponds to A=1 and B=2; and so on. The data set also includes the variables COUNT and PERCENT. The value of COUNT is the number of observations that have the given combination of A and B values. The value of PERCENT is the percent of the total number of observations having that A and B combination.
When PROC FREQ combines different variable values into the same formatted level, the output data set contains the smallest internal value for the formatted level. For example, suppose a variable X has the values 1.1, 1.4, 1.7, 2.1, and 2.3. When you submit the statement

```plaintext
format x 1.;
```

in a PROC FREQ step, the formatted levels listed in the frequency table for X are 1 and 2. If you create an output data set with the frequency counts, the internal values of X are 1.1 and 1.7. To report the internal values of X when you display the output data set, use a format of 3.1 with X.

Contents of the OUTPUT Statement Output Data Set

The OUTPUT statement creates a SAS data set that contains the statistics that PROC FREQ computes for the last table request. You specify which statistics to store in the output data set. There is an observation with the specified statistics for each stratum or two-way table. If PROC FREQ computes summary statistics for a stratified table, the output data set also contains a summary observation for these statistics. Additionally, you can output statistics for one-way tables, such as chi-square or binomial proportion statistics. If you use a BY statement, the output data set contains observations for each BY group.

The output data set can include the following variables:

- BY variables
- variables that identify the stratum such as A and B in the table request A*B*C*D
- variables that contain the specified statistics.

The output data set also includes variables with the \(p \)-value and degrees of freedom, asymptotic standard error (ASE), or confidence bounds when PROC FREQ computes these values for a specified statistic.

The variable names for the specified statistics in the output data set are the names of the keywords that are enclosed in underscores. PROC FREQ forms variable names for the corresponding \(p \)-values, degrees of freedom, or confidence bounds by combining the name of the keyword with one of the following prefixes:

- `DF_` degrees of freedom
- `E_` asymptotic standard error (ASE)
- `E0_` asymptotic standard error under the null hypothesis
- `L_` lower confidence bound
- `P_` \(p \)-value
- `P2_` two-sided \(p \)-value
- `PL_` left-sided \(p \)-value
- `PR_` right-sided \(p \)-value
- `U_` upper confidence bound
- `XP_` exact \(p \)-value
- `XP2_` exact two-sided \(p \)-value
- `XPR_` exact right-sided \(p \)-value
- `XPL_` exact left-sided \(p \)-value
- `XL_` exact lower confidence bound
- `XU_` exact upper confidence bound
Z_ standardized value

If the length of the prefix plus the statistic keyword exceeds eight characters, PROC FREQ truncates the keyword so that the name of the new variable is eight characters long.

Examples

Example 1: Creating an Output Data Set with Table Cell Frequencies

Procedure features:
- TABLES statement,
- multiple requests
- TABLES statement options:
 - OUT=
 - OUTEXPECT
 - SPARSE
- WEIGHT statement

Other features:
- PRINT procedure

This example
- creates two frequency tables and a crosstabulation table using existing cell counts
- creates an output data set for the last table request with frequencies, percentages, and expected cell frequencies
- includes zero cell counts in the output data set
- displays the output data set.

Program

options nodate pageno=1 linesize=80 pagesize=60;

data color;
 input Region Eyes $ Hair $ Count @@;
 label eyes='Eye Color'
 hair='Hair Color'
 region='Geographic Region';
datalines;
 1 blue fair 23 1 blue red 7 1 blue medium 24
The WEIGHT statement uses Count to weight the observations.

```sas
proc freq data=color;
  weight count;
```

The TABLES statement requests three tables: Eyes and Hair frequencies and an Eyes by Hair crosstabulation. OUT= creates the FREQCNT data set that contains crosstabulation table frequencies. OUTEXPECT stores expected cell frequencies and SPARSE stores zero cell counts in FREQCNT.

```sas
tables eyes hair eyes*hair/out=freqcnt outexpect sparse;
```

The TITLE statement specifies a title.

```
title 'Eye and Hair Color of European Children';
run;
```

PROC PRINT displays the FREQCNT data set. The TITLE statement specifies a title.

```
proc print data=freqcnt noobs;
  title2 'Output Data Set from PROC FREQ';
run;
```

Output

By default, PROC FREQ lists the variable values in alphabetical order. Because Eyes*Hair requests a crosstabulation table, the table rows are eye color and the table columns are hair color. A zero cell count for green eyes and black hair indicates that this eyes and hair combination does not occur in the data.
The FREQ Procedure

Eye Color

<table>
<thead>
<tr>
<th>Eyes</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>222</td>
<td>29.13</td>
<td>222</td>
<td>29.13</td>
</tr>
<tr>
<td>brown</td>
<td>341</td>
<td>44.75</td>
<td>563</td>
<td>73.88</td>
</tr>
<tr>
<td>green</td>
<td>199</td>
<td>26.12</td>
<td>762</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Hair Color

<table>
<thead>
<tr>
<th>Hair</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>22</td>
<td>2.89</td>
<td>22</td>
<td>2.89</td>
</tr>
<tr>
<td>dark</td>
<td>182</td>
<td>23.88</td>
<td>204</td>
<td>26.77</td>
</tr>
<tr>
<td>fair</td>
<td>228</td>
<td>29.92</td>
<td>432</td>
<td>56.69</td>
</tr>
<tr>
<td>medium</td>
<td>217</td>
<td>28.48</td>
<td>649</td>
<td>85.17</td>
</tr>
<tr>
<td>red</td>
<td>113</td>
<td>14.83</td>
<td>762</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Table of Eyes by Hair

<table>
<thead>
<tr>
<th>Eyes(Eye Color)</th>
<th>Hair(Hair Color)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>blue</td>
<td>6</td>
</tr>
<tr>
<td>brown</td>
<td>16</td>
</tr>
<tr>
<td>green</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
</tr>
</tbody>
</table>

The output data set contains frequency counts and percentages for the last table. The data set also includes an observation for the zero cell count and a variable with the expected cell frequency for each table cell.
Example 2: Computing Chi-Square Tests for One-Way Frequency Tables

Procedure features:
- PROC FREQ statement option:
 - ORDER=
- BY statement
- TABLES statement options:
 - NOCUM
 - TESTP=
- WEIGHT statement

Other features:
- SORT procedure

Data set: COLOR on page 571

This example
- sorts a data set by geographic region
- creates a one-way frequency table for each BY group
- orders the values of the frequency table by their appearance in the input data set
- suppresses the cumulative frequencies and percentages
- computes a chi-square goodness-of-fit test for specified proportions.

The chi-square goodness-of-fit test examines whether the children's hair color has a specified multinomial distribution for two regions. The hypothesized distribution for hair color is 30 percent fair, 12 percent red, 30 percent medium, 25 percent dark, and 3 percent black.

Program

```sas
options nodate pageno=1 linesize=80 pagesize=60;
```
PROC SORT sorts the observations by the variable Region.

```
proc sort data=color;
   by region;
run;
```

ORDER=DATA orders the frequency table values (hair color) by their order in the data set. The WEIGHT statement uses Count to weight the observations.

```
proc freq data=color order=data;
   weight count;
```

The TABLES statement requests a frequency table for hair color. NOCUM suppresses the cumulative frequencies and percentages. TESTP= specifies hypothesized percentages for the chi-square test. The number of percentages equals the number of table levels and the percentages sum to 100.

```
tables hair/nocum testp=(30 12 30 25 3);
```

The BY statement produces a separate table for each BY group and displays a heading above each one.

```
by region;
```

The TITLE statement specifies a title.

```
title 'Hair Color of European Children';
run;
```

Output

The frequency table lists the variable values (hair color) in the order that they appear in the data set. The last column lists the hypothesized percentages for the chi-square test. Always check that you have ordered the TESTP= percentages to correctly match the order of the variable levels.

PROC FREQ computes a chi-square statistic for each region. The chi-square statistic is significant at the .05 level for region 2 (p<.05) but not for region 1, indicating a significant departure from the hypothesized percentages in region 2.
<table>
<thead>
<tr>
<th>Hair</th>
<th>Frequency</th>
<th>Percent</th>
<th>Test Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair</td>
<td>76</td>
<td>30.89</td>
<td>30.00</td>
</tr>
<tr>
<td>red</td>
<td>19</td>
<td>7.72</td>
<td>12.00</td>
</tr>
<tr>
<td>medium</td>
<td>83</td>
<td>33.74</td>
<td>30.00</td>
</tr>
<tr>
<td>dark</td>
<td>65</td>
<td>26.42</td>
<td>25.00</td>
</tr>
<tr>
<td>black</td>
<td>3</td>
<td>1.22</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Chi-Square Test for Specified Proportions

Chi-Square: 7.7602
DF: 4
Pr > ChiSq: 0.1008

Hair Color of European Children

--- Geographic Region=1 ---

The FREQ Procedure

Hair Color

<table>
<thead>
<tr>
<th>Hair</th>
<th>Frequency</th>
<th>Percent</th>
<th>Test Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair</td>
<td>152</td>
<td>29.46</td>
<td>30.00</td>
</tr>
<tr>
<td>red</td>
<td>94</td>
<td>18.22</td>
<td>12.00</td>
</tr>
<tr>
<td>medium</td>
<td>134</td>
<td>25.97</td>
<td>30.00</td>
</tr>
<tr>
<td>dark</td>
<td>117</td>
<td>22.67</td>
<td>25.00</td>
</tr>
<tr>
<td>black</td>
<td>19</td>
<td>3.68</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Chi-Square Test for Specified Proportions

Chi-Square: 21.3824
DF: 4
Pr > ChiSq: 0.0003

Example 3: Computing Binomial Proportions for One-Way Frequency Tables

Procedure features:
PROC FREQ statement option:
ORDER=
TABLES statement options:
ALPHA=
BINOMIAL
WEIGHT statement

Data set: COLOR on page 571
This example:
- creates a one-way frequency tables using existing cell counts
- orders the values of the frequency table by their frequency in the input data set
- computes the binomial proportion and the corresponding test statistic
- specifies the null hypothesis proportion for the asymptotic test of the binomial proportion
- specifies the confidence level for the confidence bounds.

Program

options nodate pageno=1 linesize=80 pagesize=40;
ORDER=FREQ orders the frequency table values by their frequency in the data set. The WEIGHT statement uses Count to weight the observations.

proc freq data=color order=freq;
 weight count;

tables eyes/binomial alpha=.1;

tables hair/binomial(p=.28);

title ‘Hair and Eye Color of European Children’;
run;

Output

The frequency table lists the variable values in the order of the descending frequency count. PROC FREQ computes the binomial proportion for the first variable level. The report includes the asymptotic standard error (ASE), and asymptotic and exact confidence bounds for the binomial proportion. The specified confidence level of .1 results in 90 percent confidence bounds. Because the value of Z is less than zero for eye color, PROC FREQ computes a left-sided p-value. The small p-value supports the alternative hypothesis that the true value of the proportion of children with brown eyes is less than 50 percent.
Hair and Eye Color of European Children

The FREQ Procedure

<table>
<thead>
<tr>
<th>Eyes</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>brown</td>
<td>341</td>
<td>44.75</td>
<td>341</td>
<td>44.75</td>
</tr>
<tr>
<td>blue</td>
<td>222</td>
<td>29.13</td>
<td>563</td>
<td>73.88</td>
</tr>
<tr>
<td>green</td>
<td>199</td>
<td>26.12</td>
<td>762</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Binomial Proportion for Eyes = brown

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>0.4475</td>
</tr>
<tr>
<td>ASE</td>
<td>0.0180</td>
</tr>
<tr>
<td>90% Lower Conf Bound</td>
<td>0.4179</td>
</tr>
<tr>
<td>90% Upper Conf Bound</td>
<td>0.4771</td>
</tr>
</tbody>
</table>

Exact Conf Bounds

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90% Lower Conf Bound</td>
<td>0.4174</td>
</tr>
<tr>
<td>90% Upper Conf Bound</td>
<td>0.4779</td>
</tr>
</tbody>
</table>

Test of H0: Proportion = 0.5

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE under H0</td>
<td>0.0181</td>
</tr>
<tr>
<td>Z</td>
<td>-2.8981</td>
</tr>
<tr>
<td>One-sided Pr < Z</td>
<td>0.0019</td>
</tr>
<tr>
<td>Two-sided Pr ></td>
<td>0.0038</td>
</tr>
</tbody>
</table>

Because the value of Z is greater than zero for hair color, PROC FREQ computes a right-sided p-value. The large p-value provides insufficient evidence to reject the null hypothesis that the proportion of children with fair hair equals 28 percent.
Example 4: Analyzing a 2×2 Contingency Table

Procedure features:
- PROC FREQ statement option:
 - ORDER=
- EXACT statement
- TABLES statement options:
 - CHISQ
 - RELRISK
 - WEIGHT statement

Other features:
- FORMAT procedure
- SORT procedure

This example
- creates a two-way contingency table using existing cell counts
- sorts the data in descending order so that the first table cell contains the frequency of positive exposure and positive response
- computes chi-square tests, exact Pearson chi-square test, and Fisher's exact test to compare the probability of coronary heart disease for two types of diet
computes estimates of the relative risk and 95 percent exact confidence bounds for the odds ratio.

Program

```sas
options nodate pageno=1 linesize=84 pagesize=64;

PROC FORMAT creates user-written formats to identify the type of exposure and response with character values.

```sas
proc format;
 value expfmt 1='High Cholesterol Diet'
 0='Low Cholesterol Diet';
 value rspfmt 1='Yes'
 0='No';
run;
```

The data set FATCOMP contains hypothetical data for a case-control study of high fat diet and the risk of coronary heart disease. The data are recorded as cell counts instead of as one observation per subject. The variable Count contains the frequencies for each exposure and response combination.

```sas
data fatcomp;
 input Exposure Response Count;
 label response='Heart Disease';
datalines;
0 0 6
0 1 2
1 0 4
1 1 11;
```

PROC SORT sorts the observations in descending order by the variables Exposure and Response.

```sas
proc sort data=fatcomp;
 by descending exposure descending response;
run;
```

ORDER=DATA orders the contingency table values by their order in the data set. The WEIGHT statement uses Count to weight the observations.

```sas
proc freq data=fatcomp order=data;
 weight count;
```

The TABLES statement requests a two-way table. CHISQ requests chi-square tests. RELRISK requests relative risk measures.
tables exposure*response / chisq relrisk;

The EXACT statement requests the exact Pearson chi-square test and exact confidence bounds for the odds ratio.

exact pchi or;

The FORMAT statement assigns formats to the variables Exposure and Response. The TITLE statement specifies a title.

format exposure expfmt. response rspfmt.;
title 'Case-Control Study of High Fat/Cholesterol Diet';
run;

Output

The contingency table lists the variable values so that the first table cell contains the frequency of positive exposure and response. PROC FREQ does not truncate the formatted variable values that are more than 16 characters but uses multiple lines to show Exposure levels.

PROC FREQ displays a warning message that sample size requirements may not be met for the asymptotic chi-square tests. The exact tests are appropriate when sample size is small.

Because the alternative hypothesis for this analysis states that coronary heart disease was more likely associated with a high fat diet, a one-tailed test is desired. Fisher's exact test (right-tailed) tests that the probability of heart disease in the high fat group exceeds the probability of heart disease in the low fat group.

The odds ratio, which provides an estimate of the relative risk when an event is rare, indicates that the odds of heart disease are 8.25 times higher in the high fat diet group. However, the wide confidence bounds indicate that this estimate has low precision.
### Table of Exposure by Response

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Frequency</th>
<th>Percent</th>
<th>Row Pct</th>
<th>Col Pct</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Cholesterol</td>
<td>11</td>
<td>47.83</td>
<td>73.33</td>
<td>84.62</td>
<td>15</td>
</tr>
<tr>
<td>Diet</td>
<td>4</td>
<td>17.39</td>
<td>26.67</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>Low Cholesterol</td>
<td>2</td>
<td>8.70</td>
<td>25.00</td>
<td>15.38</td>
<td>8</td>
</tr>
<tr>
<td>Diet</td>
<td>6</td>
<td>26.09</td>
<td>75.00</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>56.52</td>
<td>43.48</td>
<td>100.00</td>
<td>23</td>
</tr>
</tbody>
</table>

#### Statistics for Table of Exposure by Response

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DF</th>
<th>Value (Asymptotic)</th>
<th>Prob (Asymptotic)</th>
<th>Prob (Exact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>1</td>
<td>4.9597</td>
<td>0.0259</td>
<td>0.0393</td>
</tr>
<tr>
<td>Likelihood Ratio Chi-Square</td>
<td>1</td>
<td>5.0975</td>
<td>0.0248</td>
<td></td>
</tr>
<tr>
<td>Continuity Adj. Chi-Square</td>
<td>1</td>
<td>3.1879</td>
<td>0.0742</td>
<td></td>
</tr>
<tr>
<td>Mantel-Haenszel Chi-Square</td>
<td>1</td>
<td>4.7441</td>
<td>0.0294</td>
<td></td>
</tr>
<tr>
<td>Fisher’s Exact Test (Left)</td>
<td></td>
<td></td>
<td>0.9967</td>
<td></td>
</tr>
<tr>
<td>(Right)</td>
<td></td>
<td></td>
<td>0.0367</td>
<td></td>
</tr>
<tr>
<td>(2-Tail)</td>
<td></td>
<td></td>
<td>0.0393</td>
<td></td>
</tr>
<tr>
<td>Phi Coefficient</td>
<td></td>
<td>0.4644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency Coefficient</td>
<td></td>
<td>0.4212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cramer’s V</td>
<td></td>
<td>0.4644</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**WARNING:** 50% of the cells have expected counts less than 5. (Asymptotic) Chi-Square may not be a valid test.

#### Estimates of the Relative Risk (Row1/Row2)

<table>
<thead>
<tr>
<th>Type of Study</th>
<th>Value (Asymptotic)</th>
<th>95% Confidence Bounds (Asymptotic)</th>
<th>95% Confidence Bounds (Exact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-Control</td>
<td>8.2500</td>
<td>1.1535 59.0029</td>
<td>0.8677 105.5488</td>
</tr>
<tr>
<td>Cohort (Col1 Risk)</td>
<td>2.9333</td>
<td>0.8502 10.1204</td>
<td></td>
</tr>
<tr>
<td>Cohort (Col2 Risk)</td>
<td>0.3556</td>
<td>0.1403 0.9009</td>
<td></td>
</tr>
</tbody>
</table>

Sample Size = 23
**Example 5: Creating an Output Data Set Containing Chi-Square Statistics**

**Procedure features:**
- **PROC FREQ statement option:**
  - ORDER=
- **OUTPUT statement options:**
  - OUT=
  - statistic-keywords
- **TABLES statement options:**
  - CHISQ
  - DEVIATION
  - EXPECTED
  - NOCOL
  - NOROW
- **WEIGHT statement**

**Other features:**
- PRINT procedure

**Data set:** COLOR on page 571

This example
- creates a 3×5 contingency table showing the joint frequency distribution for two variables
- suppresses the row and column percentages for each cell
- displays the expected frequency for each cell
- displays each cell’s contribution to the total Pearson chi-square statistic
- creates an output data set with Pearson chi-square and likelihood-ratio chi-square statistics
- displays the output data set.

**Program**

```plaintext
options nodate pageno=1 pagesize=60;
proc freq data=color order=data;
 weight count;
 tables eyes*hair /chisq expected cellchi2
 norow nocol;
```

ORDER=DATA orders the table values (eye and hair color) by their order in the data set. The WEIGHT statement uses Count to weight the observations.
The OUTPUT statement creates the CHISQDAT data set with eight variables. \( N \) stores the number of nonmissing observations, \( NMISS \) stores the number of missing observations, \( PCHI \) stores Pearson chi-square statistics, and \( LRCHI \) stores likelihood-ratio chi-square statistics. The TITLE statement specifies a title.

```plaintext
output out=chisqdat pchi lrchi n nmiss;
title 'Chi-Square Tests for 3 by 5 Table of Eye and Hair Color';
run;
```

PROC PRINT displays the CHISQDAT data set. The TITLE statement specifies a title.

```plaintext
proc print data=chisqdat noobs;
title 'Chi-Square Statistics for Eye and Hair Color';
title2 'Output Data Set from the FREQ Procedure';
run;
```
The contingency table lists eye and hair color in the order that they appear in the data set. The first column label explains the contents of each table cell. The Pearson chi-square provides evidence of an association between eye and hair color (p=0.007). The cell chi-square values show that most of the association is due to more green-eyed children with fair or red hair and fewer with dark or black hair. Exactly the opposite occurs with the brown-eyed children.

### Chi-Square Tests for 3 by 5 Table of Eye and Hair Color

The FREQ Procedure

<table>
<thead>
<tr>
<th>Eyes(Eye Color)</th>
<th>Hair(Hair Color)</th>
<th>Frequency</th>
<th>Expected</th>
<th>Cell Chi-Square</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fair</td>
<td>red</td>
<td>medium</td>
<td>dark</td>
<td>black</td>
</tr>
<tr>
<td>blue</td>
<td>69</td>
<td>28</td>
<td>68</td>
<td>51</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>66.425</td>
<td>32.921</td>
<td>63.22</td>
<td>53.024</td>
<td>6.4094</td>
</tr>
<tr>
<td></td>
<td>0.0998</td>
<td>0.7357</td>
<td>0.3613</td>
<td>0.0772</td>
<td>0.0262</td>
</tr>
<tr>
<td></td>
<td>9.06</td>
<td>3.67</td>
<td>8.92</td>
<td>6.69</td>
<td>0.79</td>
</tr>
<tr>
<td>green</td>
<td>69</td>
<td>38</td>
<td>55</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>59.543</td>
<td>29.51</td>
<td>56.671</td>
<td>47.53</td>
<td>5.7454</td>
</tr>
<tr>
<td></td>
<td>1.5019</td>
<td>2.4422</td>
<td>0.0492</td>
<td>2.3329</td>
<td>5.7454</td>
</tr>
<tr>
<td></td>
<td>9.06</td>
<td>4.99</td>
<td>7.22</td>
<td>4.86</td>
<td>0.00</td>
</tr>
<tr>
<td>brown</td>
<td>90</td>
<td>47</td>
<td>94</td>
<td>94</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>102.03</td>
<td>50.568</td>
<td>97.109</td>
<td>81.446</td>
<td>9.8451</td>
</tr>
<tr>
<td></td>
<td>1.4187</td>
<td>0.2518</td>
<td>0.0995</td>
<td>1.935</td>
<td>3.8478</td>
</tr>
<tr>
<td></td>
<td>11.81</td>
<td>6.17</td>
<td>12.34</td>
<td>12.34</td>
<td>2.10</td>
</tr>
<tr>
<td>Total</td>
<td>228</td>
<td>113</td>
<td>217</td>
<td>182</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>29.92</td>
<td>14.83</td>
<td>28.48</td>
<td>23.88</td>
<td>2.89</td>
</tr>
</tbody>
</table>

Statistics for Table of Eyes by Hair

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DF</th>
<th>Value</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>8</td>
<td>20.9248</td>
<td>0.0073</td>
</tr>
<tr>
<td>Likelihood Ratio Chi-Square</td>
<td>8</td>
<td>25.9733</td>
<td>0.0011</td>
</tr>
<tr>
<td>Mantel-Haenszel Chi-Square</td>
<td>1</td>
<td>3.7838</td>
<td>0.0518</td>
</tr>
<tr>
<td>Phi Coefficient</td>
<td></td>
<td>0.1657</td>
<td></td>
</tr>
<tr>
<td>Contingency Coefficient</td>
<td></td>
<td>0.1635</td>
<td></td>
</tr>
<tr>
<td>Cramer’s V</td>
<td></td>
<td>0.1172</td>
<td></td>
</tr>
</tbody>
</table>

Sample Size = 762

The output data set has one observation that contains the sample size, number of missing observations, and chi-square statistics with the corresponding degrees of freedom and probability values.
### Chi-Square Statistics for Eye and Hair Color

Output Data Set from the FREQ Procedure

<table>
<thead>
<tr>
<th>N</th>
<th>NMISS</th>
<th><em>PCHI</em></th>
<th>DF_PCHI</th>
<th>P_PCHI</th>
<th><em>LRCHI</em></th>
<th>DF_LRCHI</th>
<th>P_LRCHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>762</td>
<td>0</td>
<td>20.9248</td>
<td>8</td>
<td>.007349898</td>
<td>25.9733</td>
<td>8</td>
<td>.001061424</td>
</tr>
</tbody>
</table>
Example 6: Computing Cochran-Mantel-Haenszel Statistics for a Stratified Table

Procedure features:
   TABLES statement options:
     CMH
     NOPRINT
     WEIGHT statement

This example
   □ creates stratified two-way contingency tables using existing cell counts
   □ suppresses the display of the contingency tables
   □ computes Cochran-Mantel-Haenszel statistics adjusting for the effects of a stratification variable.

Program

The data set MIGRAINE contains hypothetical data for a clinical trial of migraine treatment. Subjects of both genders either receive new drug therapy or a placebo. Their response to treatment is coded as better or the same. The data are recorded as cell counts instead of as one observation per subject. The variable Frequency contains the frequencies for each treatment and response combination.

```
options nodate pageno=1 linesize=80 pagesize=60;

data migraine;
 input Gender $ Treatment $ Improve $ Frequency @@;
datalines;
female Active Better 16 female Active Same 11
female Placebo Better 5 female Placebo Same 20
male Active Better 12 male Active Same 16
male Placebo Better 7 male Placebo Same 19;
```

The WEIGHT statement uses Frequency to weight the observations.

```
proc freq data=migraine;
 weight frequency;
```

The TABLES statement requests a three-way table stratified by Gender where Treatment forms the rows and Improve forms the columns. CMH requests the Cochran-Mantel-Haenszel statistics. NOPRINT suppresses the display of contingency tables.

```
tables gender*treatment*improve/cmh noprint;
```
The TITLE statement specifies a title.

    title1 'Clinical Trial for Treatment of Migraine Headaches';
    run;
The FREQ Procedure

Output

PROC FREQ computes Cochran-Mantel-Haenszel statistics, controlling for Gender. For stratified 2x2 contingency tables, these statistics include estimates of the common relative risk and the Breslow-Day test for homogeneity of the odds ratios. For a stratified 2x2 table, the three CMH statistics test the same hypothesis. The significant p-value (.004) indicates that the association between treatment and response remains strong after adjusting for gender.

The large p-value for the Breslow-Day test (.222) indicates no significant gender difference in the odds ratios. Because this is a prospective study, the relative risk estimate assesses the effectiveness of the new drug. The probability of migraine improvement with the new drug is just over two times the probability of improvement with the placebo.

Clinical Trial for Treatment of Migraine Headaches

The FREQ Procedure

Summary Statistics for Treatment by Improve
Controlling for Gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Alternative Hypothesis</th>
<th>DF</th>
<th>Value</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nonzero Correlation</td>
<td>1</td>
<td>8.3052</td>
<td>0.0040</td>
</tr>
<tr>
<td>2</td>
<td>Row Mean Scores Differ</td>
<td>1</td>
<td>8.3052</td>
<td>0.0040</td>
</tr>
<tr>
<td>3</td>
<td>General Association</td>
<td>1</td>
<td>8.3052</td>
<td>0.0040</td>
</tr>
</tbody>
</table>

Estimates of the Common Relative Risk (Row1/Row2)

<table>
<thead>
<tr>
<th>Type of Study</th>
<th>Method</th>
<th>Value</th>
<th>95% Confidence Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-Control</td>
<td>Mantel-Haenszel</td>
<td>3.3132</td>
<td>1.4456 7.5934</td>
</tr>
<tr>
<td>(Odds Ratio)</td>
<td>Logit</td>
<td>3.2941</td>
<td>1.4182 7.6515</td>
</tr>
<tr>
<td>Cohort</td>
<td>Mantel-Haenszel</td>
<td>2.1636</td>
<td>1.2336 3.7948</td>
</tr>
<tr>
<td>(Coll1 Risk)</td>
<td>Logit</td>
<td>2.1059</td>
<td>1.1951 3.7108</td>
</tr>
<tr>
<td>Cohort</td>
<td>Mantel-Haenszel</td>
<td>0.6420</td>
<td>0.4705 0.8761</td>
</tr>
<tr>
<td>(Coll2 Risk)</td>
<td>Logit</td>
<td>0.6613</td>
<td>0.4852 0.9013</td>
</tr>
</tbody>
</table>

Breslow-Day Test for Homogeneity of the Odds Ratios

Chi-Square	1.4929
DF	1
Pr > ChiSq	0.2218

Total Sample Size = 106
Example 7: Computing the Cochran-Armitage Trend Test

Procedure features:
EXACT statement options:
  statistic-keywords
  MAXTIME=
TABLES statement options:
  CL
  MEASURES
  TREND
TEST statement
WEIGHT statement

This example
  □ creates a two-way table using existing cell counts
  □ computes measures of association and asymptotic 95% confidence bounds
  □ computes asymptotic and exact p-values for the Cochran-Armitage trend test
  □ specifies the maximum time to compute an exact p-value
  □ computes asymptotic tests for Somers’ D(C| R).

The Cochran-Armitage test checks for trend in binomial proportions across levels of a single factor. Use this test for a contingency table with a two-level response variable and an explanatory variable with any number of ordered levels. The binomial proportion is defined as the proportion in the first level of the response variable. PROC FREQ uses explanatory variable scores to compute the Cochran-Armitage test, which you can set to meaningful values that reflect the degree of difference among the levels.

Program

options nodate pageno=1 linesize=80 pagesize=72;

data pain;
  input Dose Adverse $ Count @@;
cards;
  0 No 26 0 Yes  6
  1 No 26 1 Yes  7
  2 No 23 2 Yes  9
  3 No 18 3 Yes 14
  4 No  9 4 Yes 23
;

The data set PAIN contains hypothetical data for a clinical trial of a drug therapy to control pain. The clinical trial investigates whether adverse responses increase with larger drug doses. Subjects receive either a placebo or one of four drug doses. An adverse response is coded No or Yes. The data are recorded as cell counts instead of as one observation per subject. The variable Count contains the frequencies for each drug dose and response combination.
The WEIGHT statement uses Count to weight the observations.

```latex
proc freq data=pain;
 weight count;
```

The TABLES statement requests a two-way table. TREND requests the Cochran-Armitage trend test. MEASURES requests measures of associations and CL computes confidence bounds.

```latex
tables dose*adverse /trend measures cl;
```

The TEST statement computes an asymptotic test for Somers' $D(C|R)$.

```latex
test smdcr;
```

The EXACT statement requests exact trend test. MAXTIME= specifies that PROC FREQ terminate the computations after 60 seconds (1 minute).

```latex
exact trend /maxtime=60;
```

The TITLE statement specifies a title.

```latex
 title1 'Clinical Trial for Treatment of Pain';
run;
```

**Output**

The Row Pct values show the expected increasing trend in the proportion of adverse effects (from 18.75% to 71.88%).
Clinical Trial for Treatment of Pain

The FREQ Procedure

Table of Dose by Adverse

<table>
<thead>
<tr>
<th>Dose</th>
<th>Adverse</th>
<th>Frequency</th>
<th>Percent</th>
<th>Row Pct</th>
<th>Col Pct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>26</td>
<td>16.15</td>
<td>81.25</td>
<td>25.49</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>26</td>
<td>16.15</td>
<td>78.79</td>
<td>25.49</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>23</td>
<td>14.29</td>
<td>71.88</td>
<td>22.55</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>18</td>
<td>11.18</td>
<td>56.25</td>
<td>17.65</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>9</td>
<td>5.59</td>
<td>28.13</td>
<td>8.82</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>102</td>
<td>63.35</td>
<td>36.65</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Statistics for Table of Dose by Adverse

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>ASE</th>
<th>95% Confidence Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>0.5313</td>
<td>0.0935</td>
<td>0.3480 0.7146</td>
</tr>
<tr>
<td>Kendall’s Tau-b</td>
<td>0.3373</td>
<td>0.0642</td>
<td>0.2114 0.4631</td>
</tr>
<tr>
<td>Stuart’s Tau-c</td>
<td>0.4111</td>
<td>0.0798</td>
<td>0.2547 0.5675</td>
</tr>
<tr>
<td>Somers’ D C</td>
<td>R</td>
<td>0.2569</td>
<td>0.0409</td>
</tr>
<tr>
<td>Somers’ D R</td>
<td>C</td>
<td>0.4427</td>
<td>0.0837</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0.3776</td>
<td>0.0714</td>
<td>0.2378 0.5175</td>
</tr>
<tr>
<td>Spearman Correlation</td>
<td>0.3771</td>
<td>0.0718</td>
<td>0.2363 0.5178</td>
</tr>
<tr>
<td>Lambda Asymmetric C</td>
<td>R</td>
<td>0.2373</td>
<td>0.0837</td>
</tr>
<tr>
<td>Lambda Asymmetric R</td>
<td>C</td>
<td>0.1250</td>
<td>0.0662</td>
</tr>
<tr>
<td>Lambda Symmetric</td>
<td>0.1604</td>
<td>0.0621</td>
<td>0.0388 0.2821</td>
</tr>
<tr>
<td>Uncertainty Coefficient C</td>
<td>R</td>
<td>0.1261</td>
<td>0.0467</td>
</tr>
<tr>
<td>Uncertainty Coefficient R</td>
<td>C</td>
<td>0.0515</td>
<td>0.0191</td>
</tr>
<tr>
<td>Uncertainty Coefficient Symmetric</td>
<td>0.0731</td>
<td>0.0271</td>
<td>0.0199 0.1262</td>
</tr>
</tbody>
</table>
Somers’ $D \ (C|\ R)$ measures the association. The column variable (Adverse) is the response and the row variable (Dose) is a predictor. Because the asymptotic 95% confidence bound does not contain zero, this indicates a strong positive association. Similarly, Pearson and Spearman correlation coefficients show evidence of a strong positive association as hypothesized.

The Cochran-Armitage test supports the trend hypothesis. The small left-sided $p$-values indicate that the probability of the Column 1 level (Adverse=No) decreases as Dose increases, or equivalently, that the probability of the Column 2 level (Adverse=Yes) increases as Dose increases. The two-sided $p$-value tests against either the increasing or the decreasing alternative. This is an appropriate hypothesis when you want to determine whether the drug has progressive effects on the probability of adverse effects, but the direction is unknown.

### Clinical Trial for Treatment of Pain

```
 The FREQ Procedure
 Somers’ D C|R

 Somers’ D C|R 0.2569
 ASE 0.0499
 95% Lower Conf Bound 0.1592
 95% Upper Conf Bound 0.3547

 Test of H0: Somers’ D C|R = 0
 ASE under H0 0.0499
 Z 5.1511
 One-sided Pr > Z <.0001
 Two-sided Pr > |Z| <.0001

 Cochran-Armitage Trend Test

 Statistic (Z) -4.7918

 Asymptotic Test
 One-sided Pr < Z <.0001
 Two-sided Pr > |Z| <.0001

 Exact Test
 One-sided Pr <= Z 7.237E-07
 Two-sided Pr >= |Z| 1.324E-06

 Sample Size = 161
```
computes the first two Cochran-Mantel-Haenszel statistics

- uses rank scores to compute the Cochran-Mantel-Haenszel statistics
- suppresses the display of contingency tables for each stratum.

Friedman’s test is a nonparametric test for treatment differences in a randomized complete block design. Each block of the design may be a subject or a homogeneous group of subjects. If blocks are groups of subjects, the number of subjects in each block must equal the number of treatments. Treatments are randomly assigned to subjects within each block. If there is one subject per block, then the subjects are repeatedly measured once they are under each treatment. The order of treatments is randomized for each subject.

In this setting, Friedman’s test is identical to the ANOVA (row means scores) CMH statistic when the analysis uses rank scores (SCORES=RANK). The three-way table uses subject (or subject group) as the stratifying variable, treatment as the row variable, and response as the column variable. PROC FREQ handles ties by assigning midranks to tied response values. If there are multiple subjects per treatment in each block, the ANOVA CMH statistic is a generalization of Friedman’s test.

Program

The data set HYPNOSIS contains data for a study investigating whether hypnosis has the same effect on skin potential (measured in millivolts) for four emotions. (Lehmann 1975, 264). Eight subjects are asked to display fear, happiness (joy), depression (sadness), and calmness under hypnosis. The data are recorded as one observation per subject for each emotion.

```plaintext
options nodate pageno=1 linesize=80;

data hypnosis;
 length Emotion $ 10;
 input Subject Emotion $ SkinResponse @@;

datalines;
 1 fear 23.1 1 joy 22.7 1 sadness 22.5 1 calmness 22.6
 2 fear 57.6 2 joy 53.2 2 sadness 53.7 2 calmness 53.1
 3 fear 10.5 3 joy 9.7 3 sadness 10.8 3 calmness 8.3
 4 fear 23.6 4 joy 19.6 4 sadness 21.1 4 calmness 21.6
 5 fear 11.9 5 joy 13.8 5 sadness 13.7 5 calmness 13.3
 6 fear 54.6 6 joy 47.1 6 sadness 39.2 6 calmness 37.0
 7 fear 21.0 7 joy 13.6 7 sadness 13.7 7 calmness 14.8
 8 fear 20.3 8 joy 23.6 8 sadness 16.3 8 calmness 14.8
;
```

The TABLES statement requests a three-way table stratified by Subject and a two-way table Emotion and SkinResponse form the rows and columns of each table. CMH2 requests the first two Cochran-Mantel-Haenszel statistics. SCORES=RANK uses rank scores to compute these statistics. NOPRINT suppresses the display of contingency tables.

```plaintext
proc freq data=hypnosis;
 tables subject*emotion*skinresponse emotion*skinresponse
 /cmh2 scores=rank noprint;
```

The TITLE statement specifies a title.
Example 9: Testing Marginal Homogeneity with Cochran's Q

Procedure features:
- TABLES statement, multiple requests
- TABLES statement options:
  - AGREE
  - NOCUM
  - NOPRINT
WEIGHT statement

Other features:
  FORMAT procedure

This example
- creates frequency tables for the analysis variables using existing cell counts
- computes tests and measures of agreement, which include Cochran's Q statistic for stratified $2 \times 2$ contingency tables
- suppresses the cumulative frequencies and cumulative percentages
- suppresses the display of contingency tables.

When a binary response is measured several times or under different conditions, Cochran's Q tests that the marginal probability of a positive response is unchanged across the times or conditions. When there are more than two response categories, you can use PROC CATMOD in SAS/STAT software to fit a repeated-measures model. Data for this example are from Categorical Data Analysis by Alan Agresti. Copyright c 1990. Reprinted by permission of John Wiley and Sons, Inc.

Program

PROC FORMAT creates a user-written format to identify the response to treatment.

```sas
options nodate pageno=1 linesize=80 pagesize=60;

proc format;
 value $responsefmt 'F'='Favorable'
 'U'='Unfavorable';
run;
```

The data set DRUGS contains data for a study of three drugs to treat a chronic condition (Agresti, 1990). Forty-six subjects receive drugs A, B, and C. The response to each is coded as favorable (F) or unfavorable (U). The data are recorded as cell counts instead of as one observation per patient. The variable Count contains the cell count.

```sas
data drugs;
 input Drug_A $ Drug_B $ Drug_C $ Count @@;
 datalines;
 F F F 6 F F U 16 F U F 2
 F U U 4 U F F 2 U F U 4
 U U F 6 U U U 6;
```

The WEIGHT statement uses Count to weight the observations.

```sas
proc freq data=drugs;
 weight count;
```
The TABLES statement requests frequency tables of Drug_A, Drug_B, and Drug_C. NOCUM suppresses the cumulative values.

```latex
tables drug_a drug_b drug_c/nocum;
```

The TABLES statement requests a three-way table of Drug_A, Drug_B, and Drug_C. AGREE requests measures of agreement. NOPRINT suppresses the display of contingency tables.

```latex
tables drug_a*drug_b*drug_c/agree noprint;
```

The FORMAT statement assigns formats to the levels of Drug_A, Drug_B, and Drug_C. The TITLE statement specifies a title.

```latex
format drug_a drug_b drug_c $responsefmt.;
title 'Study of Three Drug Treatments for a Chronic Disease';run;
```

**Output**

The one-way frequency tables provide the marginal response for each drug. For drugs A and B, 61% of the subjects reported a favorable response while 35% of the subjects reported a favorable response for drug C.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>28</td>
<td>60.87</td>
</tr>
<tr>
<td>Unfavorable</td>
<td>18</td>
<td>39.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>28</td>
<td>60.87</td>
</tr>
<tr>
<td>Unfavorable</td>
<td>18</td>
<td>39.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>16</td>
<td>34.78</td>
</tr>
<tr>
<td>Unfavorable</td>
<td>30</td>
<td>65.22</td>
</tr>
</tbody>
</table>
McNemar's test shows strong discordance between drugs B and C when the response to drug A is favorable. A small negative value of simple kappa indicates no agreement between the drug B response and the drug C response.

<table>
<thead>
<tr>
<th>Study of Three Drug Treatments for a Chronic Disease</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>The FREQ Procedure</td>
<td></td>
</tr>
<tr>
<td>Statistics for Table 1 of Drug_B by Drug_C</td>
<td></td>
</tr>
<tr>
<td>Controlling for Drug_A=Favorable</td>
<td></td>
</tr>
<tr>
<td>McNemar's Test</td>
<td></td>
</tr>
<tr>
<td>----------------------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Statistic (S)</td>
<td>10.8889</td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
</tr>
<tr>
<td>Pr &gt; S</td>
<td>0.0010</td>
</tr>
<tr>
<td>Simple Kappa Coefficient</td>
<td></td>
</tr>
<tr>
<td>Kappa</td>
<td>-0.0328</td>
</tr>
<tr>
<td>ASE</td>
<td>0.1167</td>
</tr>
<tr>
<td>95% Lower Conf Bound</td>
<td>-0.2615</td>
</tr>
<tr>
<td>95% Upper Conf Bound</td>
<td>0.1960</td>
</tr>
<tr>
<td>Sample Size</td>
<td>28</td>
</tr>
</tbody>
</table>

Statistics for Table 2 of Drug_B by Drug_C
Controlling for Drug_A=Unfavorable

<table>
<thead>
<tr>
<th>McNemar's Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic (S)</td>
<td>0.4000</td>
</tr>
<tr>
<td>DF</td>
<td>1</td>
</tr>
<tr>
<td>Pr &gt; S</td>
<td>0.5271</td>
</tr>
<tr>
<td>Simple Kappa Coefficient</td>
<td></td>
</tr>
<tr>
<td>Kappa</td>
<td>-0.1538</td>
</tr>
<tr>
<td>ASE</td>
<td>0.2230</td>
</tr>
<tr>
<td>95% Lower Conf Bound</td>
<td>-0.5909</td>
</tr>
<tr>
<td>95% Upper Conf Bound</td>
<td>0.2832</td>
</tr>
<tr>
<td>Sample Size</td>
<td>18</td>
</tr>
</tbody>
</table>

In this example, the hypothesis of interest is whether the response to treatment is equal for the three drugs. Cochran's Q is statistically significant (p=0.014), which leads to rejection of the null hypothesis that the probability of favorable response is the same for the three drugs.
Summary Statistics for Drug_B by Drug_C
Controlling for Drug_A

Overall Kappa Coefficient
--------------------------------
Kappa -0.0588
ASE 0.1034
95% Lower Conf Bound -0.2615
95% Upper Conf Bound 0.1439

Test for Equal Kappa Coefficients
----------------------------------
Chi-Square 0.2314
DF 1
Pr > ChiSq 0.6305

Cochran’s Q, for Drug_A by Drug_B by Drug_C
-----------------------
Statistic (Q) 8.4706
DF 2
Pr > Q 0.0145

Total Sample Size = 46
References

Agresti, A. (1990), Categorical Data Analysis, New York: John Wiley and Sons, Inc.


