The SAS/GIS Data Model

The SAS/GIS software uses two basic types of data:

spatial data
 describes the location, shape, and interrelationships of map features

attribute data
 provides information that relates to the map features

Spatial Data Features

SAS/GIS software uses spatial data to represent the following three types of map features:

point features
 consist of individual locations shown as symbols, representing real world locations of special points of interest.

line features
 consist of sequences of two or more coordinates that form zero-width shapes, either closed or unclosed. Line features represent entities that either have no width, such as political boundaries, or ones that can be represented as having no width, such as streets or water pipes.

area features
 consist of sequences of three or more coordinates that form polygons (with single or multiple boundaries and with or without holes.) Area features represent two-dimensional entities such as geographic areas (countries, states, and so forth) or floorplans for buildings.
SAS/GIS Topology

To represent point, line, and area features in the map, SAS/GIS software defines the following topological features in the spatial data:

- **nodes**
 - are points in the spatial data coordinate space with connections to one or more chains.

- **chains**
 - are sequences of two or more points in the coordinated space. The end points (that is, the first and last points of the chain) are nodes. Each chain has a direction, from the first point toward the last point. The first point in the chain is the from-node and the last point is the to-node. Relative to its direction, each chain has a left side and a right side.

 Points between the from-node and the to-node are detail points, which serve to trace the curvature of the feature represented by the chain. Detail points are not nodes.

- **areas**
 - are two-dimensional finite regions of the coordinate space. One or more chains, called boundary chains, separate two different areas. Chains that lie completely inside an area are called internal chains and are bounded on the left and right sides by the same area.

The spatial data coordinate space can be represented in any numeric units including arbitrary values. Coordinates stored as longitude and latitude values have a maximum usable precision of about one centimeter. Representations of map features are implemented with one or more chains, as follows:

- **point features**
 - are implemented with one chain, one node (that is, the from-node and to-node for a point feature are the same node), and no detail points.

- **line and area features**
 - are implemented with one or more chains and one or more nodes.

Rules for Topological Correctness

SAS/GIS spatial data must obey the following rules in order for the topology to be correct. These rules are similar to the rules for TIGER/Line files from the U.S. Bureau of the Census (Boudriault 1987).

Rule: Topological completeness

All chains must adhere to the following conditions:

- bounded by two nodes, the from-node and the to-node

 Note. In chains for point features and for single-chain closed-loop line features or area boundaries, the from-node and the to-node are the same node, but both are still included in the chain definition.

- bounded by two areas, one on the left and one on the right.

These relationships must be complete, so the following two rules apply:
the sides of all the chains incident to any given node must form a cycle. A cycle consists of one or more chains that start or end at the same node.

the end points of chains bounding an area must form one or more disjoint cycles. This means that for each unique area ID or unique set of area IDs, all the boundary chains that have the ID value (either on the right or left, but not both) form one or more closed loops or cycles.

Rule: Topological-geometric consistency

The collection of chains, nodes, and areas must have coordinates that make the collection a disjoint partitioning of the coordinate space. The following four conditions must be true to avoid problems with displaying the spatial data:

- no two points in the combined set of nodes and detail points share the same coordinate.
- no two line segment interiors share a common coordinate.
- no two areas share a common coordinate.

Note: Graphically overlaid data may have overlapping polygons, chains, and nodes and have no topological interconnectivity.

- polygons that form the boundaries of holes inside areas must fall completely within the enclosing areas.

Note: Edge-matched data share coordinates along the common boundaries, but each chain should have the proper polygonal ID values on the side that represents the outside edge of their respective physical coverages as well as the inside edges.

Problems Resulting from Topological Errors

Topological errors in the spatial data cause the following types of problems:

- A polygonal index cannot be built for all the polygons for a particular area set.
- A successfully indexed polygon does not close
 - because the chains for a node do not form a cycle, which is sometimes the result of left- and right-side values being swapped for one or more of the connected chains
 - because a chain crosses another chain's interior coordinate space.
- Multiple features are selected when only one selection is desired due to overlapping feature coordinate space.
- Select Like Connected processing fails to select apparently connected chains.

Attribute Data

Attribute data are all other data related to map features in some way, including the data you want to analyze in the context of the map. Attribute data can be stored in the spatial database by the following methods:

- directly with the spatial data as variables in the chains data set
- indirectly in SAS data sets joined to the chains data set by a link composed of one or more variables.

Attribute data can be used as follows:

- as themes for map layers.
by actions that display or manipulate the attribute data when features are selected in the map. Actions can be defined to display the attribute data, create new SAS data sets containing subsets of the attribute data, or submit SAS programs to process the attribute data.

SAS/GIS Spatial Database Structure

A SAS/GIS spatial database consists of a set of SAS data sets that store the spatial data and a set of SAS catalog entries that define the functions of, and the relationships between, the spatial data elements.

Spatial Data Sets

As a component of the SAS System, SAS/GIS software stores all its spatial data in SAS data sets. The data sets for a SAS/GIS spatial database work together as one logical file, even though they are split into multiple physical files. The spatial data sets implement a network data structure with links that connect chains to their two end nodes and each node to one or more chains. This structure is implemented using direct pointers between the nodes and chains data sets. The details data set provides curvature points between nodes of chains, while the polygonal index data set provides an efficient method of determining the correct sequence of chains to represent polygons.

Common Spatial Data Set Variables

The following spatial data variables appear in the chains, nodes, and details data sets:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW</td>
<td>row number (used as a link when the spatial data set is used as a keyed data set as well as for database protection)</td>
</tr>
<tr>
<td>DATE</td>
<td>SAS datetime value when the record was last modified</td>
</tr>
<tr>
<td>VERSION</td>
<td>data version number</td>
</tr>
<tr>
<td>ATOM</td>
<td>edit operation number</td>
</tr>
<tr>
<td>HISTORY</td>
<td>undo history record pointer</td>
</tr>
</tbody>
</table>

Variable Linkages in the Spatial Data

The following linkages exist between and within the spatial data sets:

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Variable</th>
<th>Links to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>chains</td>
<td>ROW</td>
<td>self</td>
</tr>
<tr>
<td></td>
<td>FRNODE</td>
<td>starting from-node record in the nodes data set</td>
</tr>
<tr>
<td></td>
<td>TONODE</td>
<td>starting to-node record in the nodes data set</td>
</tr>
<tr>
<td></td>
<td>D_ROW</td>
<td>starting detail record in the details data set</td>
</tr>
<tr>
<td>nodes</td>
<td>ROW</td>
<td>self</td>
</tr>
</tbody>
</table>
Details of SAS/GIS Spatial Databases

 Spatial Data Sets

Data Set	Variable	Links to...
C_ROW1-C_ROWS	chain records in the chains data set	
NC	node record in the nodes data set used to store additional chain records	
details	ROW	self
	C_ROW	parent chain record in the chains data set or next detail continuation record in the details data set
index	C_ROW	starting chain record in the chains data set

The ROW variable is used as a link between records in the spatial data sets. The ROW variable value for the first record of a feature in the chains or nodes data sets is considered the feature ID. Because some records in the nodes data set are continuations of other records, not every row number in the nodes data set is a feature ID. As a result, node feature ID numbers are not necessarily sequential. The ROW variable also provides protection against corruption of the database caused by the accidental insertion or deletion of records. If records were linked by physical record number rather than by ROW value, and improper record insertion or deletion would throw off all linkages to subsequent records in the database. In the event the database is corrupted, the ROW variable can be used to move the records back into their proper locations with minimal data loss.

A negative value indicates that the variable points to a continuation record. The absolute value of the variable is the row number of the next record used to that feature’s data. In newly imported spatial data, continuation records always point to the next record in the data set, but this is not required. New chains can be attached to existing nodes without having to insert records, which would require extensive pointer reassignments.

The index data set has no ROW variable because it can be easily rebuilt from the chains, nodes, and details data sets from which it was originally constructed.

Because the data sets are linked together by row number, the chains, nodes, and details data sets must be radix addressable and may not be compressed.

Chains Data Set

The chains data set contains coordinates for the polylines used to form line and polygon features. (A polyline consists of either a single line segment or a series of connected line segments.) The chains data set also contains the information necessary to implement nodes in the database.

The following system variables are unique to the chains data set:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRNODE</td>
<td>starting from-node record</td>
</tr>
<tr>
<td>TONODE</td>
<td>starting to-node record</td>
</tr>
</tbody>
</table>

Note:

The TONODE and FRNODE variables can point to the same record.

| D_ROW | starting detail point record |
| ND | number of detail points in the chain |
Variable Description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| RANK | sorting key used to sort all the chains around an arbitrary node by their angle, starting from 0 and proceeding counter-clockwise. RANK values have the form ffffff.tttttt, where the ffffff component is used to sort the chain around its from-node and the tttttt component is used to sort the chain around its to-node. The ffffff and tttttt components are calculated using the following formula:
\[R = 1E5 \times ((Q-1) = \tan(A/2)) \]
where
\[R \] is the calculated ranking factor,
\[Q \] is the quadrant (1 to 4) that contains the angle \(\alpha \) for the chain. For the ffffff component, \(\alpha \) is defined by the vector \(F \rightarrow D_0 \), where \(F \) is the from-node and \(D_0 \) is the first detail coordinate. For chains with no detail coordinates, \(D_0 \) is the to-node. For the tttttt component, \(\alpha \) is defined by the vector \(T \rightarrow D_L \), where \(T \) is the to-node and \(D_L \) is the last detail coordinate. For chains with no detail coordinates, \(D_L \) is the form-node.
\[A = \pi - (Q-1) \times \pi/2. \]
The tangent term is called the half-angle tangent. Since the angle \(A/2 \) can never exceed \(\pi/4 \) (45 degrees), the half-angle tangent has values from 0 to 1. The \(Q-1 \) multiplier adjusts the range of values to 0 to 4. The values 0, 1, 2, 3, and 4 represent angles of 0, 90, 180, 270, and just under 360 degrees respectively. The \(1E5 \) multiplier is used to transform decimal rank values to integers. Thus the rank values for a chain have six significant digits. |
| XMIN | minimum X coordinate of chain |
| XMAX | maximum X coordinate of chain |
| YMIN | minimum Y coordinate of chain |
| YMAX | maximum y coordinate of chain |

The XMIN, YMIN, XMAX, and YMAX variables define a bounding box for the chain. These variables are included in the chains data set to make it possible to select all the chains in a given X-Y region by looking only at the chains data set. In addition to the system variables, the chains data set may also contain any number of attribute variables, some of which may be polygon IDs. Since the chains have sides, there are typically paired variables for bilateral data such as polygon areas or address values. The names of the paired variables typically end with L or R for the left and right sides, respectively. For example, the data set may contain COUNTYL and COUNTYR variables with the codes for the county areas on the left and right sides of the chain, respectively. However, this naming convention is not required.

Nodes Data Set

The nodes data set contains the coordinates of the nodes for the chains in the chains data set and the linkage information necessary to attach chains to the correct nodes. A
node definition may span multiple records in the nodes data set, so only the starting record number for a node is a node feature ID.

The following system variables are unique to the nodes data set:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_ROW1-</td>
<td>Chain records for the first five chains connected to the node. If fewer than five chains are connected to the node, the unused variables are set to 0.</td>
</tr>
<tr>
<td>C_ROW5</td>
<td>number of chain pointers (if five or fewer chains are connected to the node) or the negative of the next continuation node record number (if more than five chains are connected to the node). See the section on variable linkages in the spatial data in the SAS/GIS Software: Usage and Reference, Version 6 for more information about how NC is used to string continuation node records.</td>
</tr>
<tr>
<td>X</td>
<td>X coordinate of node</td>
</tr>
<tr>
<td>Y</td>
<td>Y coordinate of node</td>
</tr>
</tbody>
</table>

Details Data Set

The details data set stores curvature points of a chain between the two end nodes. Therefore, it contains all the coordinates between the intersection points of the chains. The node coordinates are not duplicated in the details data set.

The following system variables are unique to the details data set:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_ROW</td>
<td>parent chain record (if the chain has ten or fewer detail points) or the negative of the next continuation detail record (if the chain has more than ten detail points). See the section on variable linkages in the spatial data in the SAS/GIS Software: Usage and Reference, Version 6 for a description of how C_ROW is used to string continuation detail records.</td>
</tr>
<tr>
<td>X1-X10</td>
<td>X coordinates of up to 10 detail points</td>
</tr>
<tr>
<td>Y1-Y10</td>
<td>Y coordinates of up to 10 detail points</td>
</tr>
</tbody>
</table>

Detail coordinate pairs (X2, Y2) through (X10, Y10) contain missing values if they are not used. The missing values ensure that the unused coordinate pairs are never used in any coordinate range calculation. The various importing methods set unused detail coordinates to missing as a precautionary measure.

Polygonal Index Data Set

Polygonal indexes are indexes to chains data sets. The index contains a record for each boundary of each polygon that was successfully closed in the index creation process. The same rules used to construct polygons are also used to construct polygonal indexes.
The following system variables are unique to polygonal index data sets:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_ROW</td>
<td>starting chain from which a polygon can be dynamically traversed and closed. This chain is sometimes referred to as the seed chain for the polygon. Any chain on a polygon’s boundary can be the seed chain.</td>
</tr>
<tr>
<td>FLAGS</td>
<td>control flag for polygons</td>
</tr>
<tr>
<td>NC</td>
<td>number of chains in the polygon boundary</td>
</tr>
</tbody>
</table>

Polygonal index data sets are created with the POLYGONAL INDEX statement in the GIS procedure. See the section on POLYGONAL INDEX statements in the SAS/GIS Software: Usage and Reference, Version 6 for more information about using the GIS procedure to create polygonal index data sets.

Catalog Entries

SAS/GIS software uses SAS catalog entries to store metadata for the spatial database—that is, information about the spatial data values in the spatial data sets. SAS/GIS spatial databases use the following entry types.

Spatial Entries

A spatial entry is a SAS catalog entry of type GISSPA that identifies the spatial data sets for a given spatial database and defines relationships between the variables in those data sets.

SAS/GIS software supports simple spatial entries and compound spatial entries as follows:

Simple spatial entries contain:
- references to the chains, nodes, and details data sets that contain spatial information.
- references to any polygonal index data sets that define the boundaries of area features in the spatial data.
- definitions for composite associations that specify how the variables in the spatial data sets are used. See the section on composite associations in the SAS/GIS Software: Usage and Reference, Version 6 for more information.
- the definition for a lattice hierarchy that specifies which area features in the spatial data enclose or are enclosed by other features.
- the parameters for the projection system used to interpret the spatial information stored in the spatial data sets.
- the bounding extents of the spatial data coordinates, consisting of the minimum and maximum X and Y coordinate values and the ranges of X and Y values.

Compound spatial entries contain logical references to two or more other child spatial entries, along with a specification of how the entries were merged (by overlapping or edge matching). A compound spatial database consists of multiple SAS/GIS spatial databases linked together hierarchically in tree structure.

Spatial entries are created and modified using the SPATIAL statement in the GIS procedure.
Note: You can also create a new spatial entry by making the following selections from the GIS Map Window's menu bar:

File — Save As — Spatial

The following other statements in the GIS procedure also update the information in the spatial entry:

COMPOSITE statement
creates or modifies composite associations that define the relation and function of variables in the spatial data sets. See the section on COMPOSITE state in the SAS/GIS Software: Usage and Reference, Version 6 for details on using the GIS procedure to create or modify composite associations.

POLYGONAL INDEX statement
updates the list of available index names stored in the spatial entry. See the section on POLYGONAL INDEX statements in the SAS/GIS Software: Usage and Reference, Version 6 for details of using the GIS procedure to create or modify polygonal indexes.

LATTICE statement
updates the lattice hierarchy stored in the spatial entry. See the section on LATTICE statements in the SAS/GIS Software: Usage and Reference, Version 6 for details on using the GIS procedure to define lattice hierarchies.

You can view a formatted report of the contents of a spatial entry by submitting a SPATIAL CONTENTS statement in the GIS procedure. See the section on SPATIAL statements in the SAS/GIS Software: Usage and Reference, Version 6 for more information about using the GIS procedure to create, modify, or view the contents of spatial entries.

Coverage Entries
A coverage entry is a SAS catalog entry of type GISCOVER that defines the subset, or coverage, of the spatial data that is available to a map. SAS/GIS maps refer to coverages rather than directly to the spatial data.

A coverage entry contains the following elements:

- a reference to the root spatial entry.
- a WHERE clause that describes the logical subset of the spatial data that is available for display in a map. (The clause WHERE=1 can be used to define a coverage that includes all the data in the spatial database.)

 The WHERE clause binds the coverage entry to the spatial data sets that it subsets. The WHERE clause is checked for compatibility with the spatial data when the coverage entry is created and also whenever a map that uses the coverage entry is opened.

- the maximum and minimum X and Y coordinates in the portion of the spatial data that meets the WHERE clause criteria for the coverage.

 These maximum and minimum coordinates are evaluated when the coverage is created. The GIS procedure's COVERAGE CREATE statement reads the matching chains and determines the extents from the chains; XMIN, YMIN, XMAX, and YMAX variables. If you make changes to the chains, nodes, and details data sets that affect the coverage extents, you should use the COVERAGE UPDATE statement to update the bounding extent values.

Multiple coverage entries can refer to the same spatial entry to create different subsets of the spatial data for different maps. For example, you could define a series of
coverages to subset a county into multiple sales regions according to the block groups contained in each of the regions. The county would still be in a single spatial database represented by the chains, nodes, and details data sets and the controlling spatial entry.

Coverage entries are created and modified using the COVERAGE statement in the GIS procedure. You can view a formatted report of the contents of a coverage entry by submitting a COVERAGE CONTENTS statement in the GIS procedure. (The contents report for a coverage entry will also include all the contents information for the root spatial entry as well.)

See the section on COVERAGE statements in the SAS/GIS Software: Usage and Reference, Version 6 for more information about using the GIS procedure to create, modify, or view the contents of coverage entries.

Layer Entries

A layer entry is a SAS catalog entry of type GISLAYER that defines the set of features that comprise a layer in the map. A layer entry contains the following elements:

- a WHERE clause that describes the common characteristic of features in the layer.

 The WHERE clause binds the layer entry to the spatial data even though it is stored in a separate entry. The layer is not bound to a specific spatial entry, just to those entries representing the same type of data. Therefore a layer created for use with data imported from a TIGER file can be used with data imported from any TIGER file. The WHERE clause is checked for compatibility with spatial data when the layer entry is created and also whenever a map that uses the layer entry is opened.

 Note: When defining area layers, you can specify a composite association as an alternative to specifying an explicit WHERE clause. However, the layer entry stores the WHERE clause implied by the composite association. For example, if you specify STATE as the defining composite association for a layer, and the STATE composite association has the variable association VAR=(LEFT=STATEL,RIGHT=STATER), then the implied WHERE clause stored in the layer entry is WHERE STATEL NE STATER.

- option settings for the layer such as the layer type (point, line, or area), whether the layer is static or thematic, whether it is initially displayed or hidden, whether detail points are drawn for the layer, and the scales at which the layer is automatically turned on or off.

- the graphical attributes necessary to draw the layer if it is a static layer.

 Note: If the layer is thematic, the link to the attribute data set that supplies theme information and the breakpoints for theme ranges are stored in the map entry that uses the thematic layer rather than in the layer entry.

See the section on LAYER statements in the SAS/GIS Software: Usage and Reference, Version 6 for more information about using the GIS procedure to create, modify, or view the contents of layer entries.

Map Entries

A map entry is a SAS catalog entry of type GISMAP. map entries are the controlling entries for SAS/GIS maps because they tie together all the information needed to display a map. A map entry contains the following elements:

- a reference to the coverage entry that defines the subset of the spatial data that is available to the map. Note that the map entry refers to a particular coverage of the spatial data rather than directly to the spatial entry.
- references to the layer entries for all layers included in the map. For each thematic layer, the map entry also stores the name of the linked attribute data set that provides theme information, the name of the theme variable, and the theme range definition.
- references to any attribute data sets associated with the map, along with definitions of how the attribute data sets are linked to the spatial data.
- a reference to the SAS data set that contains labels for map features.
- definitions for the actions that can be performed when map features are selected.
- definitions for map legends.
- parameters for the projection system used to project spatial data coordinates for display.
- option settings for the map, including the following:
 - the units and mode for the map scale
 - whether coordinate, distance, and attribute feedback are displayed
 - whether detail points are read
 - whether the tool palette is active.

Map entries are created using the MAP CREATE statement in the GIS procedure. However, much of the information stored in the map entry is specified interactively in the GIS Map window.

You can view a formatted report of the contents of a map entry by submitting a MAP CONTENTS statement in the GIS procedure. (The contents report for a map entry includes all the contents information for the spatial, coverage, and layer entries as well.)

See the section on MAP statements in the SAS/GIS Software: Usage and Reference, Version 6 for details of the items that can be specified with the GIS procedure. Also see the section on SAS/GIS windows in the SAS/GIS Software: Usage and Reference, Version 6 for details of the items that can be specified interactively in the GIS Map window.

Composites

For most operations involving the spatial database, you refer to composite associations of the spatial data variables rather than directly to the variables in the spatial data sets. A composite association consists of the following elements:

- a variable association that identifies which variable or variables in the spatial database comprise the association. The variable association can specify a single variable, a pair of variables that define a bilateral (left-right) association, or two pairs of variables that define the start and end of a directional (from-to) bilateral association.

- a class attribute that identifies the role of the composite association in the spatial database.

For example, if the chains data set has a variable named FEANAME that contains feature names, you can create a composite association for the FEANAME variable that assigns the class attribute NAME to indicate that the association represents feature names. If the chains data set has COUNTYL and COUNTYR variables that contain the codes for the counties on the left and right sides of the chains, you can create a composite association that identifies the bilateral relationship between these two variables and assigns the class attribute AREA to indicate that the association defines county areas in the spatial data.
Composite associations are created and modified using the COMPOSITE statement in the GIS procedure. Composite association definitions are stored in the spatial entry. See the section on COMPOSITE statements in the SAS/GIS Software: Usage and Reference, Version 6 for more information about using the GIS procedure to create or modify composites associations.