This appendix lists the data in the sample IMS-DL/I databases ACCTDBD and EMPLINF2, and the DB2 table BANKCHRNG used in the examples in this book. It also includes the data in the descriptor files and SAS data files used in the examples in Chapter 4, "Using IMS-DL/I Data in SAS Programs," on page 49 and Chapter 5, "Browsing and Updating IMS-DL/I Data," on page 69. See Chapter 3, "Defining SAS/ACCESS Descriptor Files," on page 41 for complete information on the WIRETRN database.

Sample JCL for allocating the IMS databases, creating DBDs, creating PSBs, and creating needed flat files is provided in the SAS Sample Library files. If you want to run these examples, see “About the Example Data in This Book” on page 8 or contact
your SAS Software Representative for information about how to access the files in the SAS Sample Library provided with this release.

Access Descriptors

ACCTDBD Database Access Descriptor

This section describes the MYLIB.ACCOUNT access descriptor for the ACCTDBD database that is used in the examples. This section provides the statements used to create the ACCOUNT access descriptor in batch, interactive line, or noninteractive mode. The ACCTDBD database is described in detail in Chapter 2, “Understanding IMS-DL/I Essentials,” on page 11.

```jcl
proc access dbms=ims;
   create mylib.account.access;
      dbd=acctdbd dbtype=hdam;
      record='customer_record' sg=customer sl=225;
         item=soc_sec_number lv=2 dbf=$11.
            key=u
              se=ssnumber;
         item=customer_name lv=2 dbf=$40.
            se=custname;
         item='address info' lv=2;
            item=addr_line_1 lv=3 dbf=$30.
               se=custadd1;
            item=addr_line_2 lv=3 dbf=$30.
               se=custadd2;
            item=city lv=3 dbf=$28.
               se=custcity;
            item=state lv=3 dbf=$2.
               se=custstat;
            item=country lv=3 dbf=$20.
               se=custland;
            item=zip_code lv=3 dbf=$10.
               se=custzip;
            item=home_phone lv=2 dbf=$12.
               se=custhphn;
            item=office_phone lv=2 dbf=$12.
               se=custophn;
      record='checking_account_record' sg=chckacct sl=40;
         item=check_account_number lv=2 dbf=12.
            key=u
              se=acnumber;
         item=check_amount lv=2 dbf=pd5.2
            se=stmtamt
dbc=l;
         item=check_date lv=2 dbf=6.0
```

Example Data △ ACCTOBO Database Access Descriptor 257

item=filler1 lv=2 dbf=$2.;
item=check_balance lv=2 dbf=pd5.2
se=stmtbal
dbc=1;

record='checkingdebit_record' sg=chckdebit sl=80;
item=checkdebit_amount lv=2 dbf=pd5.2
key=y
se=debtamt
dbc=1;
item=checkdebit_date lv=2 dbf=6.0
fmt=date7.
se=debtdatd
dbc=mmddyy6.;
item=filler2 lv=2 dbf=$2.;
item=checkdebit_time lv=2 dbf=$8.
se=debtttime;
item=checkdebit_desc lv=2 dbf=$59.
se=debtdesc;

record='checkingcredit_record' sg=chckcrdt sl=80;
item=checkcredit_amount lv=2 dbf=pd5.2
key=y
se=crdtamt
dbc=1;
item=checkcredit_date lv=2 dbf=6.0
fmt=date7.
se=crdtdate
dbc=mmddyy6.;
item=filler3 lv=2 dbf=$2.;
item=checkcredit_time lv=2 dbf=$8.
se=crdtttime;
item=checkcredit_desc lv=2 dbf=$59.
se=crdtdesc;

record='savingsaccount_record' sg=saveacct sl=40;
item=savingsaccount_number lv=2 dbf=12.
key=y
se=acnumber;
item=savings_amount lv=2 dbf=pd5.2
se=stmtamt
dbc=1;
item=savings_date lv=2 dbf=6.0
fmt=date7.
se=stmtdate
dbc=mmddyy6.;
item=filler4 lv=2 dbf=$2.;
item=savingsbalance lv=2 dbf=pd5.2
se=stmtbal
dbc=1;
ITEM SAVINGS DEBIT RECORD sg=savedebt sl=80;
 item=savings_debit_amount lv=2 dbf=pd5.2
 key=y
 se=debtamt
dbc=l;
item=savings_debit_date lv=2 dbf=6.0
 fmt=date7.
 se=debtdate
dbc=mmddyy6.;
item=filler5 lv=2 dbf=$2.;
item=savings_debit_time lv=2 dbf=$8.
 se=debttime;
item=savings_debit_desc lv=2 dbf=$59.
 se=debtdesc;

record='savings_credit_record' sg=savecrdt sl=80;
 item=savings_credit_amount lv=2 dbf=pd5.2
 key=y
 se=crdtamt
dbc=l;
item=savings_credit_date lv=2 dbf=6.0
 fmt=date7.
 se=crdtdate
dbc=mmddyy6.;
item=filler6 lv=2 dbf=$2.;
item=savings_credit_time lv=2 dbf=$8.
 se=crdftime;
item=savings_credit_desc lv=2 dbf=$59.
 se=crdtdesc;

list all;
run;

EMPLINF2 Database Access Descriptor

This section describes the MYLIB.EMPLOYEE access descriptor for the EMPLINF2 database used in the examples and provides the statements that are used to create the EMPLOYEE access descriptor in batch, interactive line, or noninteractive mode.

proc access dbms=ims;
 create mylib.employee.access;
database=emplinf2 dbtype=hidam;
record='employee record' segment=employee
 segleng=150;
 item=employee_id lv=2 dbf=pd3.0
 key=u
 se=empid;
item=last_name lv=2 dbf=$10.
 se=lastname;
item=first_name lv=2 dbf=$20.
 se=frstname;
item=hire_date lv=2 dbf=6.0
 fmt=date7.
This section describes the MYLIB.WIRETRAN access descriptor for the WIRETRAN database used in examples and provides the statements used to create the WIRETRAN access descriptor in batch, interactive line, or noninteractive mode.

```plaintext
proc access dbms=ims;
  create mylib.wiretrn.access;
  database=wiretrn dbtype=hdam;
  record='wire transaction' segment=wiretran
    segln=100;
  item='ssn - account'  lv=2  dbf=$23.
    se=ssnacc
    key=y;
  item='account type'   lv=2  dbf=$1.
    se=accttype;
  item='wire date'      lv=2  dbf=$8.
    se=wiredate;
  item='wire time'      lv=2  dbf=$8.
```
View Descriptors

ACCTDBD Database View Descriptors

This section shows SAS statements used to create the view descriptors for the ACCTDBD database used in the examples in this book. The ACCTDBD database is described in Chapter 2, “Understanding IMS-DL/I Essentials,” on page 11. The view descriptors are presented here in alphabetical order for easy reference.

You can create all the view descriptors used in the book by using PROC ACCESS statements. The view descriptors are based on the MYLIB.ACCOUNT access descriptor shown earlier in this appendix.

```sas
proc access dbms=ims ad=mylib.account;
  create vlib.account.view psb=accupsb;
    select soc_sec_number
       customer_name
       city
       state
       zip_code;
    list view;

  create vlib.cdbtdate.view psb=accupsb;
    select check_account_number
       check_date;
    list view;

  create vlib.chckacct.view psb=accupsb;
    select soc_sec_number
       customer_name
       check_account_number
       check_date
       check_balance;
    list view;

  create vlib.chkcrd.view psb=accupsb pcb=2;
    select customer_record
       checking_account_record
       checking_credit_record;
    reset 17 28;
run;
```
list view;

create vlib.chkdeb.view psb=accupsb pcb=3;
 select customer_record
 checking_account_record
 checking_debit_record;
 reset 17 22;
list view;

create vlib.chktrans.view psb=accupsb;
 select customer_name
 check_account_number
 check_date
 check_balance;
list view;

create vlib.credits.view psb=accupsb;
 select soc_sec_number
 check_account_number
 check_credit_amount
 check_credit_date
 check_credit_time
 check_credit_desc;
list view;

create vlib.custacct.view psb=accupsb;
 select soc_sec_number
 customer_name
 check_account_number;
list view;

create vlib.custinfo.view psb=accupsb;
 select 2356789101112;
list view;

create vlib.custphon.view psb=accupsb;
 select soc_sec_number
 customer_name
 home_phone
 office_phone;
list view;

create vlib.savebal.view psb=accupsb;
 select soc_sec_number
 customer_name
 city
 32 36;
list view;

create vlib.ssname.view psb=accupsb;
 select soc_sec_number
 customer_name;
list view;
create vlib.trans.view psb=accupsb;
select soc_sec_number
check_account_number
check_debit_amount;
list view;
run;

EMPLINF2 Database View Descriptors
This section shows SAS statements used to create the view descriptors for the
EMPLINF2 database used in the examples in this book. The view descriptors are
presented here in alphabetical order for easy reference. You can create all the view
descriptors used in the book by using PROC ACCESS statements. The view descriptors
are based on the MYLIB.EMPLOYEE access descriptor shown earlier in this appendix.

proc access dbms=ims accdesc=mylib.employee;
create vlib.emplload.view psbname=empilpsb;
select employee_record;
list view;
create vlib.emplview.view psbname=empiupsb;
select employee_record;
list view;
create vlib.empbday.view psbname=empiupsb;
select employee_id
last_name
first_name
birthday
phone_extension;
list view;
run;

WIRETRAN Database View Descriptor
This section shows SAS statements used to create the VLIB.WIREDATA view
descriptor for the WIRETRAN database used in the examples in this book. The view
descriptor is based on the MYLIB.WIRETRAN access descriptor shown earlier in this
appendix.

proc access dbms=ims ad=mylib.wiretran;
create vlib.wiredata.view psbname=acctsam
pcbindex=5;
select ‘wire transaction’;
list view;
run;
Creating SAS Data Sets

This section shows the SAS statements that create each data file used in the book’s examples.

MYDATA.BIRTHDAY

The SAS data set MYDATA.BIRTHDAY is updated with data from the EMPLINF2 database.

```sas
data mydata.birthday;
  input @01 employee_id 6.
    @08 last_name $10.
    @19 birthday date7.;
  format employee_id 6.
    last_name $10.
    birthday date7.;
datalines;
1247 Garcia 04APR54
1078 Gibson 23APR36
1005 Knapp 06OCT38
1024 Mueller 17JUN53;
proc print data=mydata.birthday;
  title2 'SAS Data Set MYDATA.BIRTHDAY';
run;
```

MYDATA.CHECKS

The SAS data set MYDATA.CHECKS is used to update the ACCTDBD database.

```sas
data mydata.checks;
  length customer_name $40.;
  input customer_name & $
    soc_sec_number $11.
    check_account_number
    check_balance
    check_date date7.;
  format check_account_number 12.
    check_balance 12.2
    check_date date7.;
datalines;
COWPER, KEITH 241-98-4542 183352795865
862.31 25MAR95
OLSZEWSKI, STUART 309-22-4573 382654397566
486.00 02APR95
NAPOLITANO, BARBARA 250-36-8831 284522378774
104.20 10APR95
MCCALL, ROBERT 367-34-1543 644721295973;
```
MYDATA.CHGDATA

The SAS data set MYDATA.CHGDATA is used to update the ACCTDBD database.

data mydata.chgdata;
 input account 12.
 charge;
 format account 14.
 charge dollar7.;
datalines;
 345620135872 10
 345620134522 7
 345620123456 12
 382957492811 3
 345620134663 8
 345620131455 6
 345620104732 9
; run;

proc print data=mydata.chgdata;
 title2 ‘SAS Data Set MYDATA.CHGDATA’;
run;

MYDATA.CHKCRED

The SAS data set MYDATA.CHKCRED is used to add the checking credit path to
the ACCTDBD database.

data mydata.chkcred;
 /*** CUSTOMER data ***/**
 input @1 soc_sec_number $11.
 @13 customer_name $40. /
 @1 addr_line_1 $30.
 @32 addr_line_2 $30. /
 @1 city $28.
 @30 state $2.
 @33 country $20.
 @54 zip_code $10. /
 @1 home_phone $12.
 @14 office_phone $12.
 /*** CHKACCT data ***/**
 @27 check_account_number 12.0
 @40 check_amount 12.2
 @53 check_date date7. /
The SAS data set MYDATA.CHKDEBD is used to add the checking debit path to the ACCTDBD database.

data mydata.chkdebd;
 /*** CUSTOMER data ***/
 input @1 soc_sec_number $11.
 @13 customer_name $40. /
 @1 addr_line_1 $30.
 @32 addr_line_2 $30. /
 @1 city $28.
 @30 state $2.
 @33 country $20.
 @54 zip_code $10. /
 @1 home_phone $12.
 @14 office_phone $12.
 /*** CHKACCT data ***/
 @27 check_account_number 12.0
 @40 check_amount 12.2
 @53 check_date date7. /
 @1 filler1 $2.
 @4 check_balance 12.2
Example Data

```plaintext
/**** CHCKDEBT data ****/
@17 check_debit_amount  12.2
@30 check_debit_date   date7.
@38 filler2             $2. 
@41 check_debit_time   $8.  /
@1 check_debit_desc    $59.;
format check_date      date7.;
format check_debit_date date7.;
datalines;
667-73-8275 WALLS, HOOPER J.

345620145345
1266.34  820.00  23MAR95  23:54:53
CHECK 2958
667-73-8275 WALLS, HOOPER J.

345620145345
1266.34  52.00  23MAR95  23:54:53
CHECK 2948
667-73-8275 WALLS, HOOPER J.

345620145345
1266.34  193.00  28MAR95  22:51:43
CHECK 2951
667-73-8275 WALLS, HOOPER J.

345620154633  1303.41  28MAR95
1298.04  .  .

434-62-1234 SUMMERS, MARY T.
   4322 LEON ST.
GORDONSVILLE  VA USA  26001-0670
803-657-1687  345620104732  826.05  27MAR95
825.45  .  .

436-42-6394 BOOKER, APRIL M.
   9712 WALLINGFORD PL.
GORDONSVILLE  VA USA  26001-0670
803-657-1346  345620135872  220.11  26MAR95
234.89  .  30MAR94  22:34:45
CHECK 103
434-62-1224 SMITH, JAMES MARTIN
   133 TOWNSEND ST.
GORDONSVILLE  VA USA  26001-0670
803-657-3437  345620134564  2392.93  16MAR95
2645.34  432.87  18MAR95  22:13:48
CHECK 1826
434-62-1224 SMITH, JAMES MARTIN

345620134564
```
<table>
<thead>
<tr>
<th>Amount</th>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Account Number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2645.34</td>
<td>19.23</td>
<td>18MAR95</td>
<td>CHECK</td>
<td>1821</td>
<td>SMITH, JAMES MARTIN</td>
</tr>
<tr>
<td>345620134564</td>
<td>2645.34</td>
<td>723.23</td>
<td>CHECK</td>
<td>1828</td>
<td>SMITH, JAMES MARTIN</td>
</tr>
<tr>
<td>345620134564</td>
<td>2645.34</td>
<td>82.32</td>
<td>CHECK</td>
<td>1829</td>
<td>SMITH, JAMES MARTIN</td>
</tr>
<tr>
<td>345620134564</td>
<td>2645.34</td>
<td>73.62</td>
<td>CHECK</td>
<td>1830</td>
<td>SMITH, JAMES MARTIN</td>
</tr>
<tr>
<td>345620134564</td>
<td>2645.34</td>
<td>31.23</td>
<td>CHECK</td>
<td>1831</td>
<td>SMITH, JAMES MARTIN</td>
</tr>
<tr>
<td>345620134564</td>
<td>2645.34</td>
<td>162.87</td>
<td>CHECK</td>
<td>1835</td>
<td>SMITH, JAMES MARTIN</td>
</tr>
<tr>
<td>345620134564</td>
<td>2645.34</td>
<td>7.12</td>
<td>CHECK</td>
<td>1836</td>
<td>SMITH, JAMES MARTIN</td>
</tr>
<tr>
<td>345620134564</td>
<td>2645.34</td>
<td>62.34</td>
<td>CHECK</td>
<td>1833</td>
<td>SMITH, JAMES MARTIN</td>
</tr>
<tr>
<td>345620134663</td>
<td>0.00</td>
<td>24MAR95</td>
<td>ATM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.78</td>
<td>25.00</td>
<td>28MAR95</td>
<td>MAIN ST.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9712</td>
<td>178-42-6534</td>
<td>COOK RD.</td>
<td>Pattillo, Rodrigues</td>
<td>9712</td>
<td>COOK RD.</td>
</tr>
<tr>
<td>ORANGE</td>
<td>VA USA</td>
<td>26042-1650</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Data

10JUN95 1502.78 25.89 10JUN95 11:45:25
CHECK 412
156-45-5672 O’CONNOR, JOSEPH
235 MAIN ST.
ORANGE VA USA 26042-1650
803-657-5656 803-623-4257 345620123456 353.65
27MAR95 463.23 13.29 28MAR95 22:23:53
CHECK 934
156-45-5672 O’CONNOR, JOESPH

803-657-5656 803-623-4257 345620123456
463.23 32.87 31MAR95 23:35:53
CHECK 931
156-45-5672 O’CONNOR, JOSEPH

345620123456
463.23 50.00 02APR95 10:23:41
ATM GREEN ST
156-45-5672 O’CONNOR, JOESPH

345620123456
463.23 13.42 31MAR95 23:35:53
CHECK 935
657-34-3245 BARNHARDT, PAMELA S.
RT 2 BOX 324
CHARLOTTESVILLE VA USA 25804-0997
803-345-4346 803-355-2543 345620131455
1243.25 29MAR95 1243.25 . .
667-82-8275 COHEN, ABRAHAM
2345 DUKE ST.
CHARLOTTESVILLE VA USA 25804-0997
803-657-7435 803-645-4234 382957492811 7462.51
03APR95 7302.06 . .
456-45-3462 LITTLE, NANCY M.
4543 ELGIN AVE.
RICHMOND VA USA 26502-3317
803-657-3566 345620134522 608.24 25MAR95
831.65 42.73 29MAR95 23:12:34
CHECK 296
456-45-3462 LITTLE, NANCY M.

345620134522
831.65 172.45 29MAR95 23:12:34
CHECK 301
456-45-3462 LITTLE, NANCY M.

345620134522
MYDATA.EMPLDATA

The SAS data set MYDATA.EMPLDATA is used to load the EMPLINF2 database.

data mydata.empldata;
 input @01 employee_id 6.
 @08 last_name $10.
 @19 first_name $20.
 @40 hire_date yymmdd6.
 @47 birthday yymmdd6.
 @54 ssn $11. /
 @01 sex $6.
 @08 status $9.
 @18 phone_extension $9.
 @28 vacation 8.2
 @37 department 8.
 @46 zip_code $5.
 @52 city_and_state $15. /
 @01 street $20.
 @21 security 5.
 @27 sick_leave 8.2;
 format hire_date yymmdd6.
 birthday yymmdd6.;
datalines;
 1001 Waterhouse Clifton P. 781231 480101 254-43-6089
 Male Full Time X5109 8.00 200 78752 Austin,TX
 505 Cat Mountain Tr. 310 8.00
 1002 Bowman Hugh E. 801230 310714 329-88-6729
 Male Full Time X5901 40.00 1000 78741 Austin,TX
 47 Cypress Point Cir 310 80.00
 1003 Salazar Yolanda 821230 401212 166-88-7516
 Female Full Time X5169 80.00 200 78641 Leander,TX
 6811 Picket Fence Dr 310 56.00
 1004 Knight Althea 841229 500409 942-62-3354
 Female Full Time X5218 300 78664 Round Rock,TX
 8222 Whitewing Way 110 16.00
 1005 Knapp Patrice R. 811230 371004 353-43-1272
<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Job Type</th>
<th>Name</th>
<th>Gender</th>
<th>Job Type</th>
<th>Name</th>
<th>Gender</th>
<th>Job Type</th>
<th>Name</th>
<th>Gender</th>
<th>Job Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Full Time X5012 8.00</td>
<td>100</td>
<td>78748 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Pack Saddle Pass 110</td>
<td>44.00</td>
<td></td>
</tr>
<tr>
<td>1006 Garrett Olan M. 781231</td>
<td>350123</td>
<td>776-94-3545</td>
<td>Male Full Time X5208 80.00</td>
<td>300</td>
<td>78731 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 Running Doe Ln. 110</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td>1007 Brown Virgina P. 801230</td>
<td>460524</td>
<td>675-29-9081</td>
<td>Female Full Time X5258 48.00</td>
<td>300</td>
<td>78610 Buda, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2713 Nutty Brown Mil 110</td>
<td>32.00</td>
<td></td>
</tr>
<tr>
<td>1008 Hernandez Jesse L. 821230</td>
<td>330326</td>
<td>123-12-0987</td>
<td>Male Full Time X5448 56.00</td>
<td>500</td>
<td>78664 Round Rock, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4319 Red Stone Lane 8.00</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>1009 Jones Michael Y. 850330</td>
<td>310521</td>
<td>543-87-1934</td>
<td>Male Full Time X5713 80.00</td>
<td>800</td>
<td>78748 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 Moonlight Bend La 80.00</td>
<td>80.00</td>
<td></td>
</tr>
<tr>
<td>1010 Smith Janet F. 811230</td>
<td>470807</td>
<td>105-32-9011</td>
<td>Female Full Time X5621 16.00</td>
<td>700</td>
<td>78737 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>523 Rim Rock Road 8.00</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>1011 Van Hotten Gwendolyn 790201</td>
<td>420913</td>
<td>766-30-9237</td>
<td>Female Full Time X5311 40.00</td>
<td>700</td>
<td>78741 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>623 Fauntleroy Trail 32.00</td>
<td>32.00</td>
<td></td>
</tr>
<tr>
<td>1012 Quintero Pedro 810214</td>
<td>480221</td>
<td>339-94-2674</td>
<td>Male Full Time X5348 32.00</td>
<td>400</td>
<td>78741 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77 Button Quail Cove 40.00</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>1015 Scholl Madison A. 830304</td>
<td>450319</td>
<td>765-43-0581</td>
<td>Male Full Time X5419 40.00</td>
<td>500</td>
<td>78741 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3910 Covered Wagon 80.00</td>
<td>80.00</td>
<td></td>
</tr>
<tr>
<td>1017 Waggonner Merrilee D. 850330</td>
<td>360427</td>
<td>586-54-8967</td>
<td>Female Full Time X5914 56.00</td>
<td>1000</td>
<td>78722 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>941 Bridgewater Dr. 40.00</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>1020 Rudd Fred 601230</td>
<td>145-67-6532</td>
<td></td>
<td>Male Part Time</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024 Mueller Patsy 790403</td>
<td>520617</td>
<td>857-51-1838</td>
<td>Female Full Time X5822 40.00</td>
<td>900</td>
<td>78620 Dripping Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6935 Cherry Creek Rd 110</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>1031 Chan Tai 810502</td>
<td>460704</td>
<td>843-09-7123</td>
<td>Male Full Time X5331 40.00</td>
<td>400</td>
<td>78755 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1412 Arapahoe Trail 80.00</td>
<td>80.00</td>
<td></td>
</tr>
<tr>
<td>1049 Fernandez Sophia 830516</td>
<td>440911</td>
<td>764-91-0193</td>
<td>Female Full Time X5847 96.00</td>
<td>900</td>
<td>78744 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4700 Old Stage Trail 40.00</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>1050 Ameer David 850530</td>
<td>511010</td>
<td>456-34-6543</td>
<td>Male Full Time X5495 56.00</td>
<td>500</td>
<td>78735 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231 Little Hill Cir.</td>
<td></td>
</tr>
<tr>
<td>1062 Littlejohn Fannie 850429</td>
<td>540517</td>
<td>978-63-3930</td>
<td>Female Full Time X5653 8.00</td>
<td>700</td>
<td>78660 Pflugerville, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>813 Lime Rock Dr. 110</td>
<td>48.00</td>
<td></td>
</tr>
<tr>
<td>1067 Cahill Jacob 790105</td>
<td>401225</td>
<td>102-78-8765</td>
<td>Male Full Time X5042 60.00</td>
<td>100</td>
<td>78748 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121 Hidden Hollow</td>
<td>36.00</td>
<td></td>
</tr>
<tr>
<td>1071 Canady Frank A. 810331</td>
<td>411119</td>
<td>345-91-4321</td>
<td>Male Full Time X5406 8.00</td>
<td>500</td>
<td>78756 Austin, TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>741 Canyonwood Lane</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>1074 Millsap Joel B. 830831</td>
<td>360612</td>
<td>675-23-8027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>ID</td>
<td>Hours</td>
<td>Base Pay</td>
<td>Pay Grade</td>
<td>Address</td>
<td>Phone</td>
<td>Extension</td>
<td>City, State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gibson Teddy B.</td>
<td>Male Full Time</td>
<td>X5703</td>
<td>24.00</td>
<td>300</td>
<td>78755</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansford</td>
<td>Male Full Time</td>
<td>X5703</td>
<td>80.00</td>
<td>800</td>
<td>78753</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gibson George J.</td>
<td>Male Full Time</td>
<td>X5703</td>
<td>80.00</td>
<td>800</td>
<td>78753</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savage William D.</td>
<td>Male Full Time</td>
<td>X5505</td>
<td>80.00</td>
<td>600</td>
<td>78737</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmidt Penny</td>
<td>Female Full Time</td>
<td>X5822</td>
<td>80.00</td>
<td>900</td>
<td>78756</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polanski Ivan L.</td>
<td>Male Full Time</td>
<td>X5621</td>
<td>56.00</td>
<td>700</td>
<td>78620</td>
<td>Dripping Spring</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nathaniel Darryl</td>
<td>Male Full Time</td>
<td>X5544</td>
<td>40.00</td>
<td>600</td>
<td>78753</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faulkner Carrie Ann</td>
<td>Female Full Time</td>
<td>X5417</td>
<td>48.00</td>
<td>500</td>
<td>78756</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansford</td>
<td>Male Full Time</td>
<td>X5512</td>
<td>48.00</td>
<td>600</td>
<td>78757</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williamson Janice L.</td>
<td>Female Full Time</td>
<td>X5802</td>
<td>40.00</td>
<td>900</td>
<td>78610</td>
<td>Buda, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodson Alan F.</td>
<td>Male Full Time</td>
<td>X5512</td>
<td>48.00</td>
<td>600</td>
<td>78626</td>
<td>Georgetown, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokey Hill Rd</td>
<td>Male Full Time</td>
<td>X5369</td>
<td>80.00</td>
<td>400</td>
<td>78754</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reid David G.</td>
<td>Male Full Time</td>
<td>X5545</td>
<td>80.00</td>
<td>600</td>
<td>78757</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeman Leopold</td>
<td>Male Part Time</td>
<td>X5604</td>
<td>80.00</td>
<td>700</td>
<td>78756</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williamson Janice L.</td>
<td>Female Full Time</td>
<td>X5802</td>
<td>40.00</td>
<td>900</td>
<td>78610</td>
<td>Buda, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodstone Sq.</td>
<td>Male Full Time</td>
<td>X5987</td>
<td>48.00</td>
<td>1000</td>
<td>78626</td>
<td>Georgetown, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodstone Sq.</td>
<td>Male Full Time</td>
<td>X5307</td>
<td>64.00</td>
<td>400</td>
<td>78641</td>
<td>Leander, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begonia Terrace</td>
<td>Male Full Time</td>
<td>X5325</td>
<td>88.00</td>
<td>400</td>
<td>78752</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountain Lake</td>
<td>Male Full Time</td>
<td>X5446</td>
<td>40.00</td>
<td>500</td>
<td>78724</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffalo Gap Road</td>
<td>Male Full Time</td>
<td>X5446</td>
<td>40.00</td>
<td>500</td>
<td>78724</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodriguez Romualdo R.</td>
<td>Male Full Time</td>
<td>X5446</td>
<td>40.00</td>
<td>500</td>
<td>78724</td>
<td>Austin, TX</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The SAS data set MYDATA.INITSEG is used to initially load the ACCTDBD database.

data mydata.initseg;
 /******** CUSTOMER data ********/
 input @1 soc_sec_number $11.
 @13 customer_name $40. /
 @1 addr_line_1 $30.
 @32 addr_line_2 $30. /
 @1 city $28.
 @30 state $2.
 @33 country $20.
 @54 zip_code $10. /
 @1 home_phone $12.
 ;
The SAS data set MYDATA.PHONENUM is used to update the ACCTDBD database.

data mydata.phonenum;
 soc_sec_number = '667-73-8275';
 home_phone = '703-657-3098';
 office_phone = '703-645-4418';
 output;
 soc_sec_number = '434-62-1234';
 home_phone = '703-645-4418';
 office_phone = '703-657-1345';
 output;
 soc_sec_number = '174-42-6534';
 home_phone = '703-657-6234';
 office_phone = '703-657-1345';
 output;
 soc_sec_number = '564-45-5672';
 home_phone = '703-657-5656';
 office_phone = '703-623-4257';
 output;
 soc_sec_number = '657-34-3245';
 home_phone = '703-345-4346';
 office_phone = '703-355-4348';
 output;
 soc_sec_number = '456-45-3462';
 home_phone = '703-657-3566';
 office_phone = '703-645-1212';
 output;
 soc_sec_number = '416-41-3162';
run;
home_phone = '703-657-3166';
office_phone = '703-615-1212';
output;
run;

proc print data=mydata.phonenum;
 title2 'SAS Data Set MYDATA.PHONENUM';
run;

MYDATA.SAVCRED

The SAS data set MYDATA.SAVCRED is used to add the savings credit path to the ACCTDBD database.

data mydata.savcred;
 /**** CUSTOMER data ******/
 input @1 soc_sec_number $11.
 @13 customer_name $40. /
 @1 addr_line_1 $30.
 @32 addr_line_2 $30. /
 @1 city $28.
 @30 state $2.
 @33 country $20.
 @54 zip_code $10. /
 @1 home_phone $12.
 @14 office_phone $12.
 /**** SAVEACCT data ******/
 @27 savings_account_number 12.0
 @40 savings_amount 12.2
 @53 savings_date date7. /
 @1 filler4 $2.
 @4 savings_balance 12.2
 /**** SAVECRDT data ******/
 @17 savings_credit_amount 12.2
 @30 savings_credit_date date7.
 @38 filler6 $2.
 @41 savings_credit_time $8. /
 @1 savings_credit_desc $59.;
 format savings_credit_date date7.;
datalines;
667-73-8275 WALLS, HOOPER J.
 459923888253 784.29 20MAR95
 672.63 8.45 30MAR95
 09:34:18
 INTEREST
 434-62-1234 SUMMERS, MARY T.
 4322 LEON ST.
 GORDONSVILLE VA USA 26001-0670
 345689404732 8406.0 27MAR95
 8364.24 41.82 30MAR95
 23:46:03
 INTEREST
 436-42-6394 BOOKER, APRIL M.
9712 WALLINGFORD PL.
GORDONSVILLE VA USA 26001-0670
144256844728 809.45 21MAR95
1032.23 50.00 26MAR95 12:26:15
INTEREST
434-62-1224 SMITH, JAMES MARTIN

133 TOWNSEND ST.
GORDONSVILLE VA USA 26001-0670
345689473762 130.64 15MAR95
261.64 1.31 30MAR95 23:45:53
INTEREST
434-62-1224 SMITH, JAMES MARTIN

133 TOWNSEND ST.
GORDONSVILLE VA USA 26001-0670
345689498217 9421.79 16MAR95
9374.92 46.07 30MAR95 23:45:32
INTEREST
178-42-6534 PATILLO, RODRIGUES

9712 COOK RD.
ORANGE VA USA 26042-1650
345689462413 950.96 15MAR95
946.23 4.73 30MAR95 23:44:25
INTEREST
156-45-5672 O’CONNOR, JOESP

235 MAIN ST.
ORANGE VA USA 26042-1650
345689435776 136.40 27MAR95
284.97 1.43 30MAR95 23:48:56
INTEREST
657-34-3245 BARNHARDT, PAMELA S.

RT 2 BOX 324
CHARLOTTESVILLE VA USA 25804-0997
859993641223 845.35 18MAR95
2553.45 71.44 26MAR95 08:41:28
INTEREST
667-82-8275 COHEN, ABRAHAM

2345 DUKE ST.
CHARLOTTESVILLE VA USA 25804-0997
884672297126 945.25 26MAR95
793.25 52.33 28MAR95 11:45:26
INTEREST
456-45-3462 LITTLE, NANCY M.

345689463822 929.24 25MAR95
924.62 4.62 30MAR95 23:46:01
INTEREST
234-74-4612 WIKOWSKI, JONATHAN S.

4356 CAMPUS DRIVE
RICHMOND VA USA 26502-3317

;
The SAS data set MYDATA.SAVDEBD is used to add the savings debit path to the ACCTDBD database.

data mydata.savdebd;
 /**** CUSTOMER data ***/
 input @1 soc_sec_number $11.
 @13 customer_name $40. /
 @1 addr_line_1 $30.
 @32 addr_line_2 $30. /
 @1 city $28.
 @30 state $2.
 @33 country $20.
 @54 zip_code $10. /
 @1 home_phone $12.
 @14 office_phone $12.
 /**** SAVEACCT data ***/
 @27 savings_account_number 12.0
 @40 savings_amount 12.2
 @53 savings_date date7. /
 @4 savings_balance 12.2
 /**** SAVEDEBT data ***/
 @17 savings_debit_amount 12.2
 @30 savings_debit_date date7.
 @38 filler5 $2.
 @41 savings_debit_time $8. /
 @1 savings_debit_desc $59.;
 format savings_date date7.;
 format savings_debit_date date7.;
datalines;
667-73-8275 WALLS, HOOPER J.

 459923888253 784.29 28MAR95
 672.63 . .
434-62-1234 SUMMERS, MARY T.
 4322 LEON ST.
GORDONSVILLE VA USA 26001-0670
 345689404732 8406.00 27MAR95
 8364.24 . .
436-42-6394 BOOKER, APRIL M.
 9712 WALLINGFORD PL.
GORDONSVILLE VA USA 26001-0670
 144256844728 809.45 21MAR95
 1032.23 . .
434-62-1224 SMITH, JAMES MARTIN
 133 TOWNSEND ST.
GORDONSVILLE VA USA 26001-0670
 345689473762 130.64 15MAR95
The SAS data set MYDATA.CUSTOMER is a SAS data set used to update the ACCTDBD database.

data mydata.customer;
 /**** CUSTOMER data ****/
MYDATA.NEWADDR

The SAS data set MYDATA.NEWADDR is in Version 6 format and is used to update
the ACCTDBD database.

data mydata.newaddr;
/**** CUSTOMER data ***/
input @1 ssn $11. /* social security number */
@13 newaddr1 $30. /* first line of address */
@44 newaddr2 $30. /* second line of address */
@1 newcity $28. /* customer city */
@30 newstate $2. /* customer state */
@33 newzip $10. /* customer zip code */
datalines;
178-42-6534 1111 PAUL PLACE
RAPIDAN VA 22215-5600
156-45-5672 2222 OSCAR DR.
ORANGE VA 26042-1650
;

VER6.SSNUMS

The SAS data set VER6.SSNUMS is in Version 6 format and is used to update the
ACCTDBD database.
data ver6.ssnums;
 input @1 ssnumb $11.
 @13 name $40.;
 datalines;
267-83-2241 GORDIEVSKY, OLEG
276-44-6885 MIFUNE, YUKIO
352-44-2151 SHIEKELESLAM, SHALA
436-46-1931 NISHIMATSU-LYNCH, CAROL
;
proc print data=mydata.ssnums;
 title2 'SAS Data Set VER6.SSNUMS';
run;

SAS Statements for Loading DB2 Table BANKCHRG

The following are the executable SAS DATA step, PROC APPEND, and PROC ACCESS statements to load DB2 table BANKCHRG.

Creating SAS Data Set MYDATA.BANK

The SAS data set MYDATA.BANK is used to load the DB2 table BANKCHRG.

Note: If you do not have DB2 at your site, change MYDATA.BANK to MYDATA.BANKCHRG and execute only the following program:

data mydata.bank;
 input @1 ssn $11.
 @13 accountn 12.
 @26 chckchrg 5.2
 @32 atmfee 5.2
 @38 loanchrg 6.2;
 format accountn 14.
 chckchrg 5.2
 atmfee 5.2
 loanchrg 6.2;
 datalines;
667-73-8275 345620145345 3.75 5.00 2.00
434-62-1234 345620104732 15.00 25.00 552.23
436-42-6394 345620135872 1.50 7.50 332.15
434-62-1224 345620134564 9.50 0.00 0.00
178-42-6534 0.50 15.00 223.77
156-45-5672 345620123456 0.00 0.00 0.00
657-34-3245 345620132455 10.25 10.00 100.00
667-82-8275 . 7.50 7.50 175.75
456-45-3462 345620134522 23.00 30.00 673.23
234-74-4612 345620113262 4.50 7.00 0.00
;
proc print data=mydata.bank;
Loading DB2 Table BANKCHRG from MYDATA.BANK

The following program loads DB2 table BANKCHRG from the SAS data set MYDATA.BANK. You must have DB2 installed at your site to run this program.

```
proc dbload dbms=db2 data=mydata.bank;
   accdesc=mylibdb2.bankchrg;
   table=<owner>.bankchrg;
   load;
run;
```

DB2 View Descriptor for BANKCHRG

The following program creates a DB2 view descriptor for the DB2 table BANKCHRG. You must have DB2 installed at your site to run this program.

```
proc access dbms=db2 ad=mylibdb2.bankchrg;
   create vlibdb2.bankchrg.view;
   select all;
   list view;
run;
```

```
proc print data=vlibdb2.bankchrg;
   title2 ‘DB2 Table BANKS.BANKCHRG’;
run;
```
Glossary

ACB
See Application Control Block (ACB).

ACBLIB
the data set containing the Application Control Blocks.

access descriptor
a SAS/ACCESS file that describes data to the SAS System that is managed by an external software vendor’s DBMS product. You use an access descriptor as a master file to create view descriptors. See also view descriptor.

Application Control Block (ACB)
a DL/I control block that contains the combined information from the Database Descriptions (DBDs) and Program Specification Blocks (PSBs).

attach parameter list
a set of parameters passed to DL/I when the IMS-DL/I engine or the IMS-DL/I DATA step interface is executed in a DL/I environment. The parameters vary for each region type. Most parameters can be modified with the SAS system options specified for the SAS/ACCESS interface for IMS-DL/I.

batch mode
a method of executing SAS programs in which you prepare a file containing SAS statements and any necessary operating system commands, and submit the program to the computer’s batch queue. While the program executes, control of the SAS System returns to your terminal or workstation where you can perform other tasks. Batch mode is sometimes referred to as running in the background. The job output can be written to files or printed on an output device.

batch region
a DL/I processing environment for accessing DL/I databases. Database data sets must be allocated to this region. A batch region is supervised by the DL/I batch control program.

BMP region
an abbreviation for Batch Message Processing region. The BMP region is a DL/I processing environment in IMS/ESA DB/DC subsystems and in CICS for running programs that access active online DL/I databases and message queues, as well as non-DL/I data sets. Database data sets are allocated to an online control region, not to the BMP region.
browsing data
the process of viewing the observations in a file. Depending on how the file is accessed, observations may be viewed one at a time or as a group in a tabular format. You cannot update data that you are browsing.

call (DL/I)
a request made by the IMS-DL/I engine to DL/I or by the IMS-DL/I DATA step interface to access one or more segments of a database or message queue, or to perform some system function.

checkpoint
the result of a CHKP call. A checkpoint establishes a synchronization point in the execution of the program. A synchronization point is used by DL/I backout services to determine which updates to back out (cancel) in the event of an abend or system crash. The program must be restarted at the synchronization point.

checkpoint ID
an 8-byte value written to the DL/I log record to identify the program checkpoint.

child
a segment in a DL/I database that is the direct dependent of another segment, which is called its parent. The data in a dependent segment rely on the parent segment and all higher segments for complete identification and qualification.

command code
a special indicator used in a Segment Search Argument (SSA) to modify the type of call being issued. The most commonly used command code is the D code, which is used to issue a path call.

control block
a storage area created by the system containing information for controlling system operations. The control block is often loaded from a control block library; for example, Database Descriptions (DBDs) may be stored in DBDLIBs.

DATA step
a group of statements in a SAS program that begins with a DATA statement and ends with either a RUN statement, another DATA statement, a PROC statement, the end of the job, or the semicolon that immediately follows instream data lines. The DATA step enables you to read raw data or other SAS data sets and use programming logic to create a SAS data set, write a report, or write to an external file.

DATA step view
a DATA step program that generates a SAS data view. Like other SAS data views, a DATA step view contains a definition of data stored elsewhere; it does not contain the physical data. DATA step views can only function as input data sets in SAS System releases beyond Release 6.08.

An input DATA step view is generated from a DATA step program. The view's input data can come from one or more sources, including external files and other SAS data sets. Because a DATA step view only reads (opens for input) other files, you cannot update this view's underlying data.

data type
an attribute of every item in a database. The data type tells the operating system how much physical storage to set aside for the item and the type of data the item will contain. It is similar to the type attribute of SAS variables.

data value
an element in a collection of data values that are organized and presented to the SAS System in a rectangular structure of columns and rows. A data value represents the intersection of a row and a column.
database
an organized collection of related data. In IMS-DL/I, a database is a collection of interrelated data elements that are organized according to a particular data model that can be processed by multiple applications.

Database Administrator (DBA)
the person responsible for developing and maintaining database management systems at a computer site.

Database Description (DBD)
a DL/I control block that defines the hierarchical data structure and the physical characteristics of a database to DL/I.

database management system (DBMS)
an integrated software package that enables you to create and manipulate data in the form of databases. See also relational database management system.

Database Recovery Control (DBRC)
an IMS facility that controls restoration of databases after a system failure. DBRC also supports data sharing among IMS/ESA subsystems.

DBB region
a DL/I batch processing environment for running programs that can access DL/I databases as well as non-DL/I data sets. In a DBB region, DL/I accesses the ACBLIB for control block information.

DBD
See Database Description (DBD).

DBDGEN
the utility procedure that generates a Database Description (DBD).

DBDLIB
a data set that contains the Database Descriptions (DBDs).

DBRC
Database Recovery Control (DBRC).

dependent segment
a segment that has a parent segment. The data in a dependent segment rely on the parent segment and all higher segments for complete identification and qualification.

DL/I
an abbreviation for Data Language/I. DL/I is IBM’s database language for IMS/ESA, CICS/OS/ESA, CICS/DOS/VS, and DL/I DOS/VS systems.

DLI region
a DL/I batch processing environment for running programs that can access DL/I databases, as well as non-DL/I data sets. No access to message queues is possible. In a DLI region, DL/I accesses the DBDLIB and PSBLIB for control block information.

editing data
the process of viewing a file with the ability to change its data. You might see the data one observation at a time or in a tabular format.

engine
a part of the SAS System that reads from or writes to a file. Each engine allows the SAS System to access files with a particular format. There are several types of engines. See also interface view engine.

feedback data
the data returned from IMS to the IMS-DL/I engine (usually in the PCB mask) after a DL/I call has been issued.
field
the smallest unit of data storage in an IMS-DL/I database.

file
a collection of related records treated as a unit. SAS files are processed and controlled through the SAS System and are stored in a SAS data library.

format
an instruction the SAS System uses to display or write each value of a variable. Some formats are supplied by SAS software. Other formats can be written by the user with the FORMAT procedure in base SAS software or with SAS/TOOLKIT software.

Get call
a DL/I call that retrieves one or more segments so that the contents of the segments can be processed or mapped by the IMS-DL/I engine.

hierarchical database
a database organized as a tree structure of segments. A DL/I database has a hierarchical data structure.

hierarchical sequence
the standard processing sequence for segments of a database record; the sequence is basically top-to-bottom, front-to-back, and left-to-right. When segments in a DL/I database are retrieved one after the other in sequential fashion, DL/I presents them in hierarchical sequence.

hierarchical structure
an arrangement of data in which records occur at distinct levels with different types of information at each level. Records are related to other records as ancestors, descendants, siblings, and so on.

IMS/ESA
an abbreviation for Information Management System/Enterprise System Architecture. IMS/ESA is an IBM database management system that uses the DL/I language.

IMS/ESA Resource Lock Manager (IRLM)
a facility for ensuring database integrity among multiple DL/I subsystems.

index
in SAS Software, a part of a SAS data file that stores both the values of a variable (in a SAS data file) and a set of directions that enable the SAS System, under certain circumstances, to locate observations in a data file more quickly and efficiently. Indexing variables usually makes data set processing faster, although the SAS System determines the most efficient way to process data maintained by the SAS System.

informat
an instruction the SAS System uses to read raw data values to create variable values. Some informats are supplied by SAS software. Other informats can be written by the user with the FORMAT procedure in base SAS software or with SAS/TOOLKIT software.

interactive line mode
a method of running SAS programs in which you enter one line of a SAS program at a time at the SAS session prompt. The SAS System processes each line immediately after you press the ENTER key. Procedure output and informative messages are returned directly to the display monitor.

interface view engine
a SAS System engine that retrieves data directly from files formatted by other software vendors and presents the data to the SAS System in the form of a SAS data
set. Interface view engines are transparent to the user and are not specified in the LIBNAME statement.

I/O area
a data structure into which a retrieved segment is placed or from which a segment being written is taken.

I/O PCB
an abbreviation for Input/Output Program Communication Block. The I/O PCB communicates information on non-database access requests.

IRLM
See IMS/ESA Resource Lock Manager (IRLM).

key field
a field that identifies and provides access to an occurrence of a segment. A key field is also called a sequence field.

libref
(1) the name temporarily associated with a SAS data library. You assign a libref with a LIBNAME statement or with operating-system control language. (2) the first part of a multilevel SAS filename indicating the SAS data library in which the file is stored. For example, in the name SASUSER.ACCOUNTS, the name SASUSER is the libref.

logical database
a collection of database segments from one or more physical databases. It enables the SAS/ACCESS IMS-DL/I interface to view a database structure that is different from the physical structure.

member
a file in a SAS data library.

member name
a name given to a file in a SAS data library. A member name can reference a SAS data set, catalog, access descriptor, or stored program.

member type
a name assigned by the SAS System that identifies the type of information stored in a SAS file. Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
a value in the SAS System indicating that no data are stored for the variable in the current observation. By default, the SAS System prints a missing numeric value as a single period (.) and a missing character value as a blank space.

noninteractive mode
a method of running SAS programs in which you prepare a file of SAS statements and submit the program to the operating system. The program runs immediately and occupies your current session.

observation
the horizontal component of a SAS data set. An observation is a collection of data values associated with a single entity, such as a customer or state. Each observation contains one data value for each variable in the data file. An observation is analogous to a record in an IMS database. Unlike rows in a DBMS table or file, observations in a SAS data file have an inherent order.

online access region
a DL/I processing environment for running batch-type programs that can access active online DL/I databases. In the SAS/ACCESS interface to IMS-DL/I, the only online access region type supported is BMP region.
online control region
 a DL/I region that controls databases and terminals and schedules activities using these resources for online processing.

parent
 a segment in a DL/I database that has one or more dependent segments, which are called its children. The data in a dependent segment rely on the parent segment and all higher segments for complete identification and qualification.

path
 a single route through a database following the hierarchical sequence of segments from a higher-level segment to a lower-level segment.

path call
 a DL/I call to a database that returns multiple segments from the hierarchical path.

PCB
 See Program Communication Block (PCB).

PCB mask
 a data structure to which DL/I returns information about the DL/I calls issued by an application.

physical database
 a collection of database segments in a specified hierarchical structure. These segments are organized according to a particular DL/I access method.

PROC SQL view
 a SAS data view defined by the SQL procedure that reads data from its underlying SAS data files, other PROC SQL views, SAS/ACCESS views, or DATA step views. Its output table can be a subset or a superset of one or multiple underlying structures. In the current release of the SAS System, you cannot reference a PROC SQL view to update its underlying data.

PROC step
 a group of SAS statements that call and execute a procedure, usually with a SAS data set as input.

Program Communication Block (PCB)
 a DL/I control block that defines a message queue or the part of a database that can be accessed by the IMS-DL/I engine or by the IMS-DL/I DATA step interface. A PCB is part of a Program Specification Block (PSB).

Program Specification Block (PSB)
 a DL/I control block that defines the DL/I resources used by the IMS-DL/I engine or by the IMS-DL/I DATA step interface. Each database used by the IMS-DL/I engine is defined by a separate Program Communication Block (PCB) within the PSB.

program view
 the part of a database that can be accessed by the IMS-DL/I engine or by the IMS-DL/I DATA step interface. The program view is established by the Program Communication Block (PCB).

PSB
 See Program Specification Block (PSB).

PSBGEN
 the utility procedure that generates a Program Specification Block (PSB).

PSBLIB
 a data set that contains the Program Specification Blocks (PSBs).
qualified call
- a DL/I call that specifies at least one Segment Search Argument (SSA).

qualified SSA
- a Segment Search Argument that contains one or more qualification statements to specify search criteria for locating particular segment occurrences.

random access
- the access mode used by the IMS-DL/I engine or by the IMS-DL/I DATA step interface when a WHERE statement is specified from which the engine can generate qualified Segment Search Arguments. In the SAS/ACCESS interface to IMS-DL/I, the distinction between sequential and random access differs from that of some other programming languages.

read integrity
- the sharing of database access so that two programs cannot access a record simultaneously if one of the programs intends to update the record.

region type
- the kind of DL/I processing environment. The IMS-DL/I engine uses two categories of region types: batch regions (DLI or DBB) and online access regions (BMP).

relational database management system
- a database management system that organizes and accesses data according to relationships between data items. The main characteristic of a relational database management system is the two-dimensional table.

restart
- the process of resuming an interrupted program without repeating completed transactions.

restricted option
- a SAS option that has been installed at your site so that its default setting cannot be overridden by the applications programmers.

return code
- a code passed to the operating system that reports the results of executing a command or job step.

root segment
- the highest-level segment in a database.

SAS data file
- a SAS data set that contains both the data values and the descriptor information.

SAS data library
- a collection of one or more SAS files that are recognized by the SAS System. Each file is a member of the library. See also libref and member.

SAS data set
- a collection of information stored as a unit under the SAS System. A SAS data set is arranged in a rectangular, two-dimensional format. Each item in a SAS data set is called a data value. Data values in a row comprise an observation, and those in a column comprise a variable. See also SAS data file and SAS data view.

SAS data view
- a SAS data set in which the descriptor information and observations are obtained from other files. SAS data views store only the information required to retrieve data values or descriptor information.

SAS/ACCESS views
- See SAS data view and view descriptor.
search field
 a field defined to DL/I in the Database Description (DBD) that can be used to search
 for particular segments. A search field does not provide unique identification of the
 segment.

segment
 in a DL/I database, a grouping of related items of data in a database structure. The
 segment is the unit of data that can be accessed by the IMS-DL/I engine or by the
 IMS-DL/I DATA step interface.

segment level
 the relative distance of a given segment from the root segment along the hierarchical
 path. This is usually represented numerically, with the root segment at level 1 and
 its immediate dependents at level 2.

segment occurrence
 in a DL/I database, a specific instance in a set of segments of one type.

Segment Search Argument (SSA)
 the formatted search criteria passed to DL/I to identify a particular segment or group
 of segments to be processed. Multiple SSAs may be specified on one DL/I call.

segment type
 in a DL/I database, a category of related data elements. There may be multiple
 segment occurrences for a given segment type.

sensitive segment
 a segment in a DL/I database that the IMS-DL/I engine or the IMS-DL/I DATA step
 interface can access. A segment is defined as sensitive for a given program in the
 Program Specification Block (PSB).

sequence field
 See key field.

sequential access
 the default access mode used by the IMS-DL/I engine to retrieve all segments down
 one path of a database. Sequential access is a method of file access in which the
 records are read or written one after the other from the beginning of the file to the
 end. In the SAS/ACCESS interface to IMS-DL/I, the distinction between sequential
 and random access differs somewhat from that of other programming languages.

siblings
 segments that share a common parent segment.

SSA
 See Segment Search Argument (SSA).

status code
 a 2-byte indicator field returned to an application program by DL/I to indicate the
 relative success of an attempted call.

Structured Query Language (SQL)
 the standardized, high-level query language used in relational database management
 systems to create and manipulate database management system objects. The SAS
 System implements SQL through the SQL procedure.

subsystem
 a complete DL/I configuration, including the DL/I region controller and service
 modules, the DL/I databases.

synchronization point
 a commitment of completed updates and a time at which all DL/I resources held
 since the last synchronization point are released. Synchronization points are
established explicitly by CHKP calls, which the IMS-DL/I engine issues (by default) at the beginning and end of update processing. Synchronization points can be used to resume processing of an interrupted job.

twins
segments that represent multiple occurrences of the same segment type under a single parent.

undefined field
a field that is not defined to DL/I in a Database Description (DBD). An undefined field is neither a sequence field nor a search field. A segment cannot be accessed by specifying this field to DL/I.

unqualified call
a DL/I call that contains no Segment Search Argument (SSA).

unqualified SSA
a Segment Search Argument that specifies a segment type and, optionally, a command code.

Update call
a DL/I call that signals the intent to alter (modify, delete, or add) information in the database.

update integrity
the sharing of database access so that two programs cannot access a record simultaneously if both of the programs intend to update the record.

variable
a column in a SAS data set. A variable is a set of data values that describe a given characteristic across all observations.

view descriptor
a SAS/ACCESS file that defines all or a subset of interface product data described by an access descriptor. The access descriptor describes the data in a single product table or view, when views are allowed in the product. See also access descriptor.

windowing procedure
a procedure that uses windows and menus to accomplish a SAS System task. For example, ACCESS, FSVIEW, and DBLOAD are windowing procedures.