"Our technological demands today impose extremely challenging and widely varying control problems. These problems range from aircraft and underwater vehicles to automobiles and space telescopes, from chemical processes and the environment to manufacturing, robotics and communication networks."

sociological, biological, ecological, economic, psychological, physiological
Student Membership Application

1. PERSONAL INFORMATION

Please enter your name as you wish it to appear on your membership card and all correspondence. Please circle your last name as a key identifier for the IEEE database. Do not exceed 40 characters or spaces per line. Please use ONLY English language characters and abbreviate as needed.

<table>
<thead>
<tr>
<th>FIRST/GIVEN NAME</th>
<th>MIDDLE</th>
<th>LAST/FAMILY/SURNAME</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ADDRESS DURING ACADEMIC YEAR</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CITY</th>
<th>STATE/PROVINCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>POSTAL CODE</th>
<th>COUNTRY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PHONE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EMAIL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FAMILY OR HOME ADDRESS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ADDRESS DURING ACADEMIC YEAR</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CITY</th>
<th>STATE/PROVINCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>POSTAL CODE</th>
<th>COUNTRY</th>
</tr>
</thead>
</table>

3. ENDORSEMENT AND SIGNATURE INFORMATION

Please print the name and provide the signature and member number of your IEEE Student Branch Counselor. If there is no counselor at your school, please obtain the endorsing signature of a faculty member who is also an IEEE member.

<table>
<thead>
<tr>
<th>IEEE BRANCH COUNSELOR'S NAME</th>
<th>COUNSELOR'S IEEE MEMBER NUMBER</th>
</tr>
</thead>
</table>

I endorse this application for student membership in the IEEE and certify the degree information as given to be correct and complete.

<table>
<thead>
<tr>
<th>IEEE BRANCH COUNSELOR'S SIGNATURE</th>
<th>SCHOOL CODE</th>
</tr>
</thead>
</table>

I hereby make application for IEEE membership and agree to be governed by the IEEE Constitution, Bylaws, and Code of Ethics. I am taking at least 50% of a full-time academic program.

<table>
<thead>
<tr>
<th>M/C/89/02/900</th>
<th>DATE</th>
</tr>
</thead>
</table>

4. STUDENT RATE

IEEE Student dues are based on where you live and where you apply. Please check the appropriate box.

A subscription to IEEE Potentials magazine is included in US and Canada membership dues. IEEE Potential is available in other countries for $5 per year. Membership is based on the calendar year from 1 January through 31 December.

<table>
<thead>
<tr>
<th>PRICES ARE QUOTED IN U.S. DOLLARS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RESIDENCE</th>
<th>PAY FULL YEAR ONLY</th>
<th>PAY HALF YEAR ONLY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>IEEE Dues</th>
<th>16 August-18 February</th>
<th>1 March-15 August</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>$60.00</td>
<td>$30.00</td>
</tr>
<tr>
<td>Canada (includes GST)</td>
<td>$75.00</td>
<td>$40.00</td>
</tr>
<tr>
<td>Canada (includes HST)</td>
<td>$85.00</td>
<td>$45.00</td>
</tr>
<tr>
<td>Other Countries</td>
<td>$25.00</td>
<td>$12.50</td>
</tr>
<tr>
<td>CONTROL SYSTEMS SOCIETY (CSS) Dues</td>
<td>$10.00</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Options for IEEE members

- Potential magazine (outside US and Canada)
- Proceedings of the IEEE (print or electronic)
- Standards Access (IEEE-SA)
- IEEE Women in Engineering (WIE)

<table>
<thead>
<tr>
<th>OPTIONS FOR IEEE MEMBERS</th>
<th>PRICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentials magazine (outside US and Canada)</td>
<td>$5.00</td>
</tr>
<tr>
<td>Proceedings of the IEEE (print or electronic)</td>
<td>$25.00</td>
</tr>
<tr>
<td>Standards Access (IEEE-SA)</td>
<td>$20.00</td>
</tr>
<tr>
<td>IEEE Women in Engineering (WIE)</td>
<td>FREE</td>
</tr>
</tbody>
</table>

Options for Control Systems Society members

- Transactions on Automation Control (print)
- Transactions on Automation Control (electronic)
- Transactions on Control Systems Technology (print)
- Transactions on Control Systems Technology (electronic)

<table>
<thead>
<tr>
<th>OPTIONS FOR CSS MEMBERS</th>
<th>PRICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transactions on Automation Control (print)</td>
<td>$35.00</td>
</tr>
<tr>
<td>Transactions on Automation Control (electronic)</td>
<td>$10.00</td>
</tr>
<tr>
<td>Transactions on Control Systems Technology (print)</td>
<td>$15.00</td>
</tr>
<tr>
<td>Transactions on Control Systems Technology (electronic)</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Please note that these rates are for the year 2003 and are subject to change. Remit in U.S. dollars drawn on a U.S. bank. Make checks payable to IEEE. Please complete and sign this application, printing clearly and mail to:

IEEE Admissions and Advancement Department

IEEE, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA

Phone: +1 800/678 4333 (US and Canada) or +1 732 981 0000 (Worldwide)
Fax: +1 732 981 0225 Email: new.membership@ieee.org

Or complete the web application at www.ieee.org/join

The Institute of Electrical and Electronics Engineers, Inc. www.ieee.css.org

The Control Systems Society of the IEEE
Control Is In Your Hands!

What are Control Systems?

Control methods are used whenever time quantity, such as temperature, altitude or speed, must be made to behave in a specified desirable way over time. For example, control methods are used to make sure that the temperature in your home stays within acceptable levels in both winter and summer; airplanes maintain desired heading, speed and altitude and that automobile emissions meet specifications. Control systems are decision-making systems where the decisions can be based on predictions of future behavior derived via models of the systems to be controlled, and on sensor-obtained observations of the actual behavior that is fed back. Control decisions are translated into control actions using control actuators. Developments in sensor and actuator technology influence control methodology, which is also influenced by the capabilities of computational resources.

What is the Control Systems Society?

Virtually every system -- engineering, organizational or biological -- whether occurring naturally or created by human hands, contains some element of control. This pervasiveness of control structures and mechanisms is reflected in the wide variety of interests represented by the membership of the IEEE Control Systems Society.

The IEEE Control Systems Society (CSS) was founded in 1954 as a scientific, engineering and professional organization dedicated to the advancement of the theory and practice of systems and control in engineering.

LEARN MORE AT www.ieeecss.org

Student Membership Benefits

- Receive the IEEE Control Systems Magazine -- considered to be one of the most interesting and readable publications devoted to systems and control.

- Receive the IEEE Spectrum, the IEEE Potential and the IEEE Institute, as well as discounts on other IEEE publications, IEEE education courses and tutorials and IEEE sponsored conferences.

- Subscriptions to the IEEE Transactions on Automatic Control, which is the premier archival journal in the theory of systems and control, and the IEEE Transactions on Control Systems Technology, which is dedicated to the publication of high-quality papers on advances in control systems engineering, also provide Web access to same-year issues through IEEE Xplornet.

- The society also sponsors numerous conferences, workshops and seminars throughout the world. The principal meeting of the CSS, the IEEE Conference on Decision and Control, is held in December each year. The annual IEEE Conference on Control Applications is dedicated to bridging the gap between the theory and practice of control systems engineering. The CSS is also one of the sponsoring societies of the American Control Conference, generally held in June.

Put Control in Your Future!

The field of control is challenging and rewarding as our world faces increasingly complex problems that need to be solved including control of emissions for a cleaner environment, automation in factories, unmanned space and underwater exploration and control of communication networks. Control engineering has strong foundations in engineering and mathematics, makes extensive use of computer software and hardware and requires the ability to address and solve new problems in a variety of disciplines, ranging from astrophysical to electrical and chemical engineering, to chemistry, biology and economics.

We are very proud to be in control. Join us and together we will enjoy meeting future challenges!
Control Systems

Meet the Challenge
Put Control in your Future
The University — OSU
was founded December 25, 1890. Today it's a comprehensive
research university with an
international reputation in
telecommunications, bioe
research and agricultural
economics.

Location — OSU is located
between Tulsa and Oklahoma
City in Stillwater. Tulsa is home
to OSU's College of Osteopathic
Medicine and the University Center.
Campuses are also located in
Oklahoma City.

Colleges — OSU has six
colleges: Agricultural Sciences
and Natural Resources, Arts
and Sciences, Business
Administration, Education;
Engineering, Architecture and
Technology; and Human
Environmental Sciences. OSU's
professional schools include
Veterinary Medicine and
Osteopathic Medicine.

Facilities — From stately
Old Central to the state-of-the-art
Noble Research Center, OSU
includes over 200 permanent
buildings on more than 900 acres.
OSU students enjoy a unique
Wellness Center for fitness and
nutrition, one of the nation's
largest student unions, and the
Edmond Law Library, where over
5 million items are available.

Greek Life — There are
58 affiliated fraternities and
sororities.

Computer Access — OSU
offers a networked campus with
internet access. Computer
enrollment, 24-hour computer
labs, and dial-up access to
are also available.

Financial Assistance —
Oklahoma State provides
financial assistance in the form
of scholarships, grants, loans and
College Work-Study each year.
Approximately 70 percent of OSU
students receive some type of
financial aid.

Faculty — More than 90
percent of the faculty hold the
highest degree in their field. The
faculty-to-student ratio is 1 to 23.

Residential Life — OSU
makes on-campus living easy with
options including traditional
residence halls, alternative living
plans, family housing, and even
foreign language floors. And
students will find more than 27
restaurants on campus
ranging from national chains to
local bakeries.

Extracurricular — Over
55 clubs and organizations. Big
Twelve athletics and intramural
sports are some of the activities
students can choose. OSU also
offers visiting comedians,
politicians, authors, movies,
popular bands, theater groups,
classical and jazz musicians, and
other cultural events to round out
the college experience.
A VARIETY OF CONTROL CURRICULUM

Control systems is a steadily growing and pervasive engineering field. There is rarely an engineering endeavor that does not involve the innovative control, analysis and synthesis of physical dynamics. Involvement in control is necessary to support processing problems in many fields, ranging from aircraft, land and underwater vehicles to earthquake and space telescopes, from chemical and environmental processes to manufacturing automation, robotic manipulation and communication networks. Control is challenging since it requires a strong foundation in mathematics and engineering. The curriculum offers a wide variety of control courses and research opportunities, including aerospace, chemical, and mechanical engineering, as well as biology, sociology, and economics. The interdisciplinary control systems program at OSU's College of Engineering, Architecture, and Technology (CEAT) embraces five schools: biological and agricultural engineering (BAE), chemical engineering (CHBE), industrial engineering and management (IEM), electrical and computer engineering (ECE), and mechanical and aerospace engineering (MAE). Over fifteen full-time faculty members engage in a wide spectrum of continuous research and education.

INSTRUCTION

The unified control program within the College offers a wide variety of control curricula. Over twenty graduate-level control courses offered during every two-year period include:

BASIC
- Linear Systems
- Nonlinear Systems
- Stochastic Systems
- Neural Networks
- Intelligent Systems
- Optimization
- Digital Control Systems
- Digital Data Acquisition
- Discrete Event Simulation
- Decision Control

ADVANCED
- Robotics
- System Identification
- Adaptive Control
- Optimal Control
- Intelligent Control
- Real-Time Control Systems
- Estimation Theory
- Queuing Theory
- Multivariable Control
- Advanced Nonlinear Control
- Advanced Process Control
- Advanced Systems Modeling
- Advanced Predictive Control
- Reliability and Maintainability

In addition to M.S. and Ph.D. degrees in traditional departments with a control specialty, an M.S. in Control Systems Engineering is available. This degree program is targeted for practicing engineers, as well as interested on-campus students. Delivery of the lectures will include video streaming by Internet, interactive TV, video tapes, two-way video conferencing, and traditional lectures and lab courses.

LABORATORIES

The Advanced Controls Laboratory explores robust control and estimation, together with control of complex mechanical systems. The Real-Time Distributed Systems Laboratory provides a research and training environment for real-time control and networking. The Power Systems Laboratory uses digital acquisition hardware and virtual instrumentation software to investigate electric machines and power electronics. The Robotics Laboratory houses facilities and supports research and development in applied robotics systems. Facilities include experimental robots and test cells, machine vision systems, and various sensors and actuators. The Data Acquisition and Control Laboratory extends theory into practice in digital control and automation applications. The Precision Agriculture Laboratory develops and tests prototype and full-scale precision agricultural equipment and systems. The Measurement and Control Engineering Center (MCEC) focuses on process control and is in partnership with the University of Tennessee with 25 industrial sponsors. The Web Handling Research Center (WHRC) with 20 industrial sponsors advances the knowledge base in technologies applicable to the transport and control of continuous strip materials. In addition, the Center for Computer Integrated Manufacturing (CCIM), established with funding from the AT&T Foundation, focuses on the modeling, analysis, design, optimization and integration of manufacturing enterprises.

RESEARCH

The control-related research at OSU/CEAT is supported by a variety of resources including, but not limited to, federal, state and industry. The active research pursued by individual faculty member listed below:

- Ken Case (IEM) - economic analysis, statistical control, TQM
- Tom Groff (ECEN) - power economics, pricing, statistical control, optimization
- Marty Hagan (ECEN) - neural control, system identification
- Karen High (CHE) - CAD, optimization, environmental engineering
- Larry Hobrock (MAE) - intelligent control, robotics, machine vision, and applications
- Manjunath Kanath (IEM) - immersive, discrete-event simulation, Petri nets
- Eduardo Missawa (MAE) - estimation, robust nonlinear control, bioinformatics
- Pradipkumar Papilla (MAE) - robotics, mechatronics, nonlinear control, manufacturing processes
- David Pratt (IEM) - economic analysis, reliability, manufacturing system design
- Karl Reid (CEAT) - web handling, fail power control
- Russ Rinehart (CHE) - process automation, optimization, pH control
- Marvin Stone (EAE) - intelligent machine, sensor development, real-time network
- Rob Whiteley (CHE) - advanced process control, fault detection, advanced monitoring
- Gary Yue (ECEN) - intelligent control, predictive control, sensor fusion
- Gary Young (MAE) - nonlinear uncertain systems, real-time distributed systems

FOR MORE INFORMATION

Contact any of the faculty listed above or visit our homepage at http://control.okstate.edu.

Prospective students interested in applying for admission or financial aid must contact the program coordinator:

Dr. Marty Hagan
School of Electrical and Computer Engineering
Oklahoma State University
202 Engineering South
Stillwater, OK 74078
(405) 744-7340
mhallan@eece.okstate.edu
ECEN/MAE 3723 Systems I
Section 001 CID:11986/14582
Fall 2006
Syllabus

Time:
Tuesday/Thursday 12:30PM-1:45PM

Place:
Engineering South 214A

Prerequisite:
ENSC 2613 - Introduction to Electrical Science
MATH 2233 - Differential Equations

Text:
System Dynamics

References:
Automatic Control Systems

Modeling and Analysis of Dynamic Systems
Charles Close and Dean Frederick, John Wiley, 3rd edition, 2002

System Dynamics
William Palm, McGraw Hill, 2005

Signals and Systems: an Introduction
Leslie Balmer, Prentice-Hall, 1991

Signals, Systems and Transforms
Charles L. Phillips and John M. Parr, Prentice-Hall, 1995

Instructor:
Professor Gary G. Yen, Engineering South 404
http://www.okstate.edu/elec-engr/faculty/yen
405-744-7743, 405-744-9198 (fax), gyen@okstate.edu
Office Hours: Tuesday/Thursday 9:00AM-12:00PM; or by appointment only

TA:
Wen-Fung Leong/ECEN, ATRC 241, 4-6511, wenf_leong@okstate.edu
TBA/MAE (weekly homework help session will be arranged)

Objectives:
To introduce selected basic tools needed for signal and system analysis and design applicable to dynamic controls through mathematical derivations and computer simulations.
The topics include
- signals and systems representation
- Laplace transform
- differential equation approach
- transfer function approach
- state space approach
- modeling of electrical systems
- modeling of mechanical systems
- modeling of fluid and thermal systems
- time-domain analysis of dynamic systems
- frequency-domain analysis of dynamic systems
- time-domain analysis of control systems
- frequency-domain analysis of control systems
- Matlab and Simulink
Grading:

10 Weekly Homework Assignments 20%
Tentative Schedule-
8/31, 9/7, 9/14, 9/21 (before the first midterm)
10/12, 10/19, 10/26, 11/2 (before the second midterm)
11/21, 11/28
10/10 Fall Break; 11/23 Thanksgiving Holiday
Midterm Exam 1 (October 5, 12:30PM-2:00PM) 20%
Oral Presentation (October 31, 12:30PM-2:00PM) 10%
Midterm Exam 2 (November 14, 12:30PM-2:00PM) 20%
Computer Project (December 8, 5:00PM) 10%
Final Exam (December 12, 10:00AM-11:50AM) 20%
A-85% above; B-76%-85%; C-66%-75%; D-56%-65%; F-55% below
No makeup exams will be given.

Note:

All exams are open notes, but close book.

Drop and Add:

The instructor will follow University, College and Departmental guidelines for drops and adds. Consult the class schedule book or departmental counselors for more information.

Attendance:

Students will be expected to attend class. Habitual failure to do so will result in a reduced grade. Class attendance is taken periodically for reference. An incomplete grade will only be given when a student misses a portion of the semester because of illness or accident. All (I) grades must be completed within thirty days.

Academic Integrity:

The instructor will strictly follow OSU's Academic Integrity Policy. Cheating on homework, quizzes or examinations, plagiarism and other forms of academic dishonesty are serious offenses and will subject the student to serious penalties.

Plagiarism. Presenting the written, published or creative work of another as your own work. Whenever you use wording, argument, data, design, etc., belonging to someone else in a paper, report, oral presentation, or other assignment, you must take this fact explicitly clear by correctly citing the appropriate references or sources. You must fully indicate the extent to which any part or parts of the project are attributed to others and provide citations for paraphrased materials.

Disability Impairment:

If any member of the class feels that he/she has a disability and needs special accommodations of any nature whatsoever, the instructor will work with you and the University Office of Disabled Student Services to provide reasonable accommodations to ensure that you have a fair opportunity to perform in this class. Please advise the instructor of such disability and the desired accommodations at some point before, during, or immediately after the first scheduled class.

Class Website:

You are advised to check on class website prior to each class at http://www.okstate.edu/elec-engr/faculty/yen/fall06.html for important information, such as handouts, homework assignments, schedule changes, old exams and etc.
Gary G. Yen
Oklahoma State University
School of Electrical and Computer Engineering
Intelligent Systems and Control Laboratory
Stillwater, OK 74078-5032, U.S.A.
(Phone) +1-405-744-7743
(Fax) +1-405-744-9198
(E-mail) gyen@ceat.okstate.edu

In affiliation with
Center for Sensors and Sensor Technologies
CSS7

Center for Aging Systems and Infrastructures
CASI

Center for Measurement and Control Engineering
MCEC

http://www.okstate.edu/elec-engr/faculty/yen/
Teaching

<table>
<thead>
<tr>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>1997</td>
</tr>
<tr>
<td>1998</td>
<td>1998</td>
</tr>
<tr>
<td>1999</td>
<td>1999</td>
</tr>
<tr>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>2001</td>
<td>2001</td>
</tr>
<tr>
<td>2002</td>
<td>2002</td>
</tr>
<tr>
<td>2003</td>
<td>2003</td>
</tr>
<tr>
<td>2004</td>
<td>2004</td>
</tr>
<tr>
<td>2005</td>
<td>2005</td>
</tr>
<tr>
<td>2006</td>
<td>2006</td>
</tr>
</tbody>
</table>

[Home](http://www.okstate.edu/elec-engr/faculty/yen/ct.html)
ECEN 3723 Systems I (Section 001)

ECEN Session-
TIMOTHY BECKMANN, MATTHEW CLARK, JOSHUA DOWNING, JENNIFER KREGER, KEITH LARSEN, JOHN MADISON, RYAN SHELTON

MAE Session-
DEREK BAILEY, JIGAR BHAKTA, KELLI BRILEY, BLAKLEE BURGESS, CODY CRISUP, BENJAMIN DVOlAK, ROBERT FISCHER, CLINTON GRELL, GARRETT HOHMANN, ANDREW KADAVY, KIRK LEWIS, ROBERT MAYES, JASON PRATT, JUSTIN PRATT, JENNA ROOT, JUSTIN SHANER, ANTHONY SNOW, ANDY STEINER, PATRICK SULLIVAN, JAMES TYLER, TAIGA YAMAMOTO

SYLLABUS
QUIZ 01(SOLUTION), QUIZ 02(SOLUTION), QUIZ 03(SOLUTION), QUIZ 04(SOLUTION), QUIZ 05 (SOLUTION)
EXAM #1(SOLUTION), EXAM #2(SOLUTION), FINAL EXAM(SOLUTION)

ECEN 3723 Systems I (Section 002)

ECEN Session-
LEON BOOMERSHINE, CODY BUTLER, KRUGER CORN, JUAN GALINDO, SCOTT HILDEBRAND, DANIEL HUMBOLT, BRIAN IVERS, JOSHUA JAMES, NOUMAN KHAN, ERIC LARSON, PAUL MOORE, KAZUNORI NISHIMURA, BENJAMIN PALMER, JIBRAN SIDDIQUE, TEHEULA-SHUE SIEWE, CHOONG-HOW TANG, MING-YEE VOO, PHILLIP WINGENDER

MAE Session-
KRISTOFFER ABU-SHARAR, WASIF AZIZ, ZACHARY BAHR, THEODORE BELSHE, KEVIN CLAYTON, SHELBY COULTER, JAMES CRAIN, JAY CROWDIS, SHAWN ERHART, ANTHONY EVANS, AARON GILMORE, SARAH HAMILTON, TOMOTHY HOEHMAN, TIFFANY ICE, JARED KOCICK, ADAM MARTIN, DENNIS MOORE, DUANE MOORE, RAYMOND O'QUINN, TRAVIS REESE, CLAYTON SANMANN, KRISTA SCHONE, THOMAS SHERWOOD, CARL TOMPSON, DONALD WYCKOFF

SYLLABUS
QUIZ 01(SOLUTION), QUIZ 02(SOLUTION), QUIZ 03(SOLUTION), QUIZ 04(SOLUTION), QUIZ 05 (SOLUTION)
EXAM #1(SOLUTION), EXAM #2(SOLUTION), FINAL EXAM(SOLUTION)

COMMON AREA FOR SECTIONS 001 AND 002:

TA: Moayed Daneshyari, 4-6511, moayed.daneshyari@okstate.edu
OFFICE HOUR: Monday 9:00am-11:00am; Wednesday 3:00pm-5:00pm at Engineering South 402
Grader (Section 001): Li Zhou, 4-4115, zhoul@myquist.mae.okstate.edu
OFFICE HOUR: Wednesday 11:00am-12:00pm at Engineering South 402
Grader (Section 002): Yunfei Zou, 4-4115, yunfei.zou@okstate.edu
OFFICE HOUR: Friday 10:45am-11:45am at Engineering South 402

EXPERT TALK SEMINAR 1(9/16/04, Section 002: 1:30pm-1:45pm; Section 001: 4:30pm-4:45pm)
- by PROF. RAFAEL FIERRO, ECEN
EXPERT TALK SEMINAR 2(10/12/04, Section 002: 1:30pm-1:45pm; Section 001: 4:30pm-4:45pm)
- by PROF. EDUARDO MISAWA, MAE
EXPERT TALK SEMINAR 3(11/9/04, Section 002: 12:30pm-12:45pm; Section 001: 3:30pm-
Adobe Acrobat Reader software is copyrighted software which gives user instant access to documents in their original form, independent of computer platform. With the Acrobat Reader, you can view, navigate and print any Portable Document Format (PDF) files.
Teaching

Fall 2006

ENGR 1111 Introduction to Engineering
JONATHAN BARNES, CINDY CHOA, PHOENIX CLINCY, ANDREW CLINE, WAYNE COGBURN, DARYN
COWAN, JAMAL HACENA, ANDREW HARRISON, MYURAN KANGA-THATALINGAM, TAYLOR LITTLEFIELD,
ZACHARY LITTLEJOHN, BRITTNI MAXSON, COURTNEY NEWMAN, ANTHONY SOPER, ALLEN STRICKER,
HONETTE SURBAUGH, MICHAEL TALIAFERRO, KRISTIN WARD, MARQUIS WARTLEY, CONNOR
WESTFALL, ALEXANDER WILLIAM

Success Coach: Robert Hargrave

ECEN/MAE 3723 Systems I (Section 001)
ECEN Session-
ANDI CABE, TYLER DEFFENBAUGH, JUSTIN EASLEY, OSAYAMEN IMADE, TOAN-CANH LY, DAVID
SILVA-SALCIDO, SHAWN STANDFAST, STEVEN WELCH, AARON WISEMAN

MAE Session-
FORREST AUSTIN, JERUS BARNETT, HEATHER BEEM, THOMAS BEZINQUE, ANDREW BYRD, SENG-YIU
CHONG, THOMAS CHRISTIAN, KYUNG-HAN CHUNG, ANDREW COLLIER, MATTHEW DICKIE, KELLY
ENNEN, DUSTIN GAMBLE, MELINDA HALE, GRANT HEIMBACH, BRIAN HUCKABAY, KELLY JOHNSON,
JUSTIN KNIGHT, MATTHEW LEGG, DAVID McVAY, CODY PINKERMAN, BRIAN POTTS, RICHARD
PRATER, BRANSON RHOADS, NICOLLE SMITH, JUSTIN WARD, JEREMY WOOTEN, CHAD YOST

SYLLABUS

ECEN/MAE 3723 Systems I (Section 002)
ECEN Session-
STEPHEN NILSON, CAMERON ZLOTOGURA

MAE Session-
WALZEK AL-ROWDAN, MATTHEW ALLEN, KARLA ARELLANES MENDOZA, JEFFREY BRIDGES, JACOB
BURTON, COREY BYARS, DANIEL DORAY, AMERICO JOSE FERNANDES, ALEXANDER FLEMING, KELLI
GOSNEY, ROSELL HULLDESTON, OMOGBOLAHAN JABBITA, ENIZA JOEL, JAMES LEWIS, EL-CHING
NGWE, JENNIFER RYAN, TODD SUSAN, AQUESHA WILLIAMS

SYLLABUS

TA/ECEN: Wen-Pung Leong, 405-744-6511, wenf.leong@okstate.edu, Hours TBA
TA/MAE:

Adobe Acrobat Reader software is copyrighted software which gives user instant access to
documents in their original form, independent of computer platform. With the Acrobat Reader, you can
view, navigate and print any Portable Document Format (PDF) files.